File size: 1,425 Bytes
3592f93
 
a0103b3
37b4d8e
 
 
 
 
 
3592f93
 
a0103b3
 
 
3592f93
 
a0103b3
 
 
 
3592f93
 
a0103b3
 
 
3592f93
 
a0103b3
 
3592f93
 
a0103b3
 
 
 
f9ddfa7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
license: apache-2.0
tags:
- finger-vein
- biometrics
- mobilenet
- siamese-network
- keras
- image-processing
---

# ๐Ÿฉบ Finger Vein Feature Extractor using MobileNet

This pretrained model is designed for **finger vein recognition**. It uses a **MobileNet-based feature extractor** trained on finger images to extract deep biometric features.

## ๐Ÿ”ง How It Works:
- The model first extracts features from finger vein images using **MobileNet**.
- These features are then used to form **image pairs**.
- A **deep neural network** (e.g. Siamese) is trained on these pairs to learn a similarity metric.
- Finally, the system classifies whether two finger vein images belong to the **same person** or not.

## ๐Ÿ“ฆ Use Cases:
- ๐Ÿ” Biometric authentication systems
- ๐Ÿ” Finger vein matching or verification
- ๐Ÿงฌ Medical/Forensic identification tasks

## ๐Ÿ–ผ๏ธ Input:
- RGB finger vein image (resized to **224ร—224**)
- Normalized to [0, 1]

## ๐Ÿ“ค Output:
- Feature vector (if using encoder only)
- Or: **Match / No-match** decision (in Siamese setup)

## ๐Ÿ’พ Model Format:
- `model.keras` โ€” Keras format for MobileNet feature extractor

## ๐Ÿ’พ code Licence:
Alaerjan, A.S., Mostafa, A.M., Mahmoud, A.A. et al. Efficient multi-finger vein recognition using layer-wise progressive MobileNet fine-tuning and a Dense-Head Probabilistic Siamese Network. Sci Rep (2025). 
https://doi.org/10.1038/s41598-025-32132-5