File size: 1,425 Bytes
3592f93 a0103b3 37b4d8e 3592f93 a0103b3 3592f93 a0103b3 3592f93 a0103b3 3592f93 a0103b3 3592f93 a0103b3 f9ddfa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: apache-2.0
tags:
- finger-vein
- biometrics
- mobilenet
- siamese-network
- keras
- image-processing
---
# ๐ฉบ Finger Vein Feature Extractor using MobileNet
This pretrained model is designed for **finger vein recognition**. It uses a **MobileNet-based feature extractor** trained on finger images to extract deep biometric features.
## ๐ง How It Works:
- The model first extracts features from finger vein images using **MobileNet**.
- These features are then used to form **image pairs**.
- A **deep neural network** (e.g. Siamese) is trained on these pairs to learn a similarity metric.
- Finally, the system classifies whether two finger vein images belong to the **same person** or not.
## ๐ฆ Use Cases:
- ๐ Biometric authentication systems
- ๐ Finger vein matching or verification
- ๐งฌ Medical/Forensic identification tasks
## ๐ผ๏ธ Input:
- RGB finger vein image (resized to **224ร224**)
- Normalized to [0, 1]
## ๐ค Output:
- Feature vector (if using encoder only)
- Or: **Match / No-match** decision (in Siamese setup)
## ๐พ Model Format:
- `model.keras` โ Keras format for MobileNet feature extractor
## ๐พ code Licence:
Alaerjan, A.S., Mostafa, A.M., Mahmoud, A.A. et al. Efficient multi-finger vein recognition using layer-wise progressive MobileNet fine-tuning and a Dense-Head Probabilistic Siamese Network. Sci Rep (2025).
https://doi.org/10.1038/s41598-025-32132-5 |