File size: 9,417 Bytes
188f311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import warnings
import os
import math
import numpy as np
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from .base_provider import DataProvider
from proard.utils.my_dataloader import MyRandomResizedCrop, MyDistributedSampler

__all__ = ["Cifar100DataProvider"]

class Cifar100DataProvider(DataProvider):
    DEFAULT_PATH = "./dataset/cifar100"
    def __init__(
        self,
        save_path=None,
        train_batch_size=256,
        test_batch_size=512,
        resize_scale=0.08,
        distort_color=None,
        valid_size=None,
        n_worker=32,
        image_size=32,
        num_replicas=None,
        rank=None,
    ):

        warnings.filterwarnings("ignore")
        self._save_path = save_path

        self.image_size = image_size  # int or list of int
    

        self._valid_transform_dict = {}
        if not isinstance(self.image_size, int):
            from proard.utils.my_dataloader.my_data_loader import MyDataLoader

            assert isinstance(self.image_size, list)
            self.image_size.sort()  # e.g., 160 -> 224
            MyRandomResizedCrop.IMAGE_SIZE_LIST = self.image_size.copy()
            MyRandomResizedCrop.ACTIVE_SIZE = max(self.image_size)

            for img_size in self.image_size:
                self._valid_transform_dict[img_size] = self.build_valid_transform(
                    img_size
                )
            self.active_img_size = max(self.image_size)  # active resolution for test
            valid_transforms = self._valid_transform_dict[self.active_img_size]
            train_loader_class = MyDataLoader  # randomly sample image size for each batch of training image
        else:
            self.active_img_size = self.image_size
            valid_transforms = self.build_valid_transform()
            train_loader_class = torch.utils.data.DataLoader

        train_dataset = self.train_dataset(self.build_train_transform())

        if valid_size is not None:
            if not isinstance(valid_size, int):
                assert isinstance(valid_size, float) and 0 < valid_size < 1
                valid_size = int(len(train_dataset) * valid_size)

            valid_dataset = self.train_dataset(valid_transforms)
            train_indexes, valid_indexes = self.random_sample_valid_set(
                len(train_dataset), valid_size
            )

            if num_replicas is not None:
                train_sampler = MyDistributedSampler(
                    train_dataset, num_replicas, rank, True, np.array(train_indexes)
                )
                valid_sampler = MyDistributedSampler(
                    valid_dataset, num_replicas, rank, True, np.array(valid_indexes)
                )
            else:
                train_sampler = torch.utils.data.sampler.SubsetRandomSampler(
                    train_indexes
                )
                valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(
                    valid_indexes
                )

            self.train = train_loader_class(
                train_dataset,
                batch_size=train_batch_size,
                sampler=train_sampler,
                num_workers=n_worker,
                pin_memory=False,
            )
            self.valid = torch.utils.data.DataLoader(
                valid_dataset,
                batch_size=test_batch_size,
                sampler=valid_sampler,
                num_workers=n_worker,
                pin_memory=False,
            )
        else:
            if num_replicas is not None:
                train_sampler = torch.utils.data.distributed.DistributedSampler(
                    train_dataset, num_replicas, rank
                )
                self.train = train_loader_class(
                    train_dataset,
                    batch_size=train_batch_size,
                    sampler=train_sampler,
                    num_workers=n_worker,
                    pin_memory=True,
                )
            else:
                self.train = train_loader_class(
                    train_dataset,
                    batch_size=train_batch_size,
                    shuffle=True,
                    num_workers=n_worker,
                    pin_memory=False,
                )
            self.valid = None

        test_dataset = self.test_dataset(valid_transforms)
        if num_replicas is not None:
            test_sampler = torch.utils.data.distributed.DistributedSampler(
                test_dataset, num_replicas, rank
            )
            self.test = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=test_batch_size,
                sampler=test_sampler,
                num_workers=n_worker,
                pin_memory=False,
            )
        else:
            self.test = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=test_batch_size,
                shuffle=True,
                num_workers=n_worker,
                pin_memory=False,
            )

        if self.valid is None:
            self.valid = self.test

    @staticmethod
    def name():
        return "cifar100"

    @property
    def data_shape(self):
        return 3, self.active_img_size, self.active_img_size  # C, H, W

    @property
    def n_classes(self):
        return 100

    @property
    def save_path(self):
        if self._save_path is None:
            self._save_path = self.DEFAULT_PATH
            if not os.path.exists(self._save_path):
                self._save_path = os.path.expanduser("~/dataset/cifar100")
        return self._save_path

    @property
    def data_url(self):
        raise ValueError("unable to download %s" % self.name())

    def train_dataset(self, _transforms):
        return datasets.CIFAR100(self.train_path, train=True, transform=_transforms,download=True)
    
    def test_dataset(self, _transforms):
        return datasets.CIFAR100(self.valid_path, train=False, transform=_transforms,download=True)
    @property
    def train_path(self):
        return os.path.join(self.save_path, "train")

    @property
    def valid_path(self):
        return os.path.join(self.save_path, "val")

    @property
    def normalize(self):
        return  transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])

    def build_train_transform(self, image_size=None, print_log=True):
        if image_size is None:
            image_size = self.image_size

		# random_resize_crop -> random_horizontal_flip
        train_transforms = [
			transforms.RandomCrop(32,padding=4),
			transforms.RandomHorizontalFlip(),
			# AutoAugment(),
		]
		
        train_transforms += [
			transforms.ToTensor(),
			# self.normalize,
		]

        train_transforms = transforms.Compose(train_transforms)
        return train_transforms

    def build_valid_transform(self, image_size=None):
        if image_size is None:
            image_size = self.active_img_size
        return transforms.Compose([
			transforms.ToTensor(),
			# self.normalize,
		])

    def assign_active_img_size(self, new_img_size):
        self.active_img_size = new_img_size
        if self.active_img_size not in self._valid_transform_dict:
            self._valid_transform_dict[
                self.active_img_size
            ] = self.build_valid_transform()
        # change the transform of the valid and test set
        self.valid.dataset.transform = self._valid_transform_dict[self.active_img_size]
        self.test.dataset.transform = self._valid_transform_dict[self.active_img_size]

    def build_sub_train_loader(
        self, n_images, batch_size, num_worker=None, num_replicas=None, rank=None
    ):
        # used for resetting BN running statistics
        if self.__dict__.get("sub_train_%d" % self.active_img_size, None) is None:
            if num_worker is None:
                num_worker = self.train.num_workers

            n_samples = len(self.train.dataset)
            g = torch.Generator()
            g.manual_seed(DataProvider.SUB_SEED)
            rand_indexes = torch.randperm(n_samples, generator=g).tolist()

            new_train_dataset = self.train_dataset(
                self.build_train_transform(
                    image_size=self.active_img_size, print_log=False
                )
            )
            chosen_indexes = rand_indexes[:n_images]
            if num_replicas is not None:
                sub_sampler = MyDistributedSampler(
                    new_train_dataset,
                    num_replicas,
                    rank,
                    True,
                    np.array(chosen_indexes),
                )
            else:
                sub_sampler = torch.utils.data.sampler.SubsetRandomSampler(
                    chosen_indexes
                )
            sub_data_loader = torch.utils.data.DataLoader(
                new_train_dataset,
                batch_size=batch_size,
                sampler=sub_sampler,
                num_workers=num_worker,
                pin_memory=False,
            )
            self.__dict__["sub_train_%d" % self.active_img_size] = []
            for images, labels in sub_data_loader:
                self.__dict__["sub_train_%d" % self.active_img_size].append(
                    (images, labels)
                )
        return self.__dict__["sub_train_%d" % self.active_img_size]