File size: 9,417 Bytes
188f311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import warnings
import os
import math
import numpy as np
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from .base_provider import DataProvider
from proard.utils.my_dataloader import MyRandomResizedCrop, MyDistributedSampler
__all__ = ["Cifar100DataProvider"]
class Cifar100DataProvider(DataProvider):
DEFAULT_PATH = "./dataset/cifar100"
def __init__(
self,
save_path=None,
train_batch_size=256,
test_batch_size=512,
resize_scale=0.08,
distort_color=None,
valid_size=None,
n_worker=32,
image_size=32,
num_replicas=None,
rank=None,
):
warnings.filterwarnings("ignore")
self._save_path = save_path
self.image_size = image_size # int or list of int
self._valid_transform_dict = {}
if not isinstance(self.image_size, int):
from proard.utils.my_dataloader.my_data_loader import MyDataLoader
assert isinstance(self.image_size, list)
self.image_size.sort() # e.g., 160 -> 224
MyRandomResizedCrop.IMAGE_SIZE_LIST = self.image_size.copy()
MyRandomResizedCrop.ACTIVE_SIZE = max(self.image_size)
for img_size in self.image_size:
self._valid_transform_dict[img_size] = self.build_valid_transform(
img_size
)
self.active_img_size = max(self.image_size) # active resolution for test
valid_transforms = self._valid_transform_dict[self.active_img_size]
train_loader_class = MyDataLoader # randomly sample image size for each batch of training image
else:
self.active_img_size = self.image_size
valid_transforms = self.build_valid_transform()
train_loader_class = torch.utils.data.DataLoader
train_dataset = self.train_dataset(self.build_train_transform())
if valid_size is not None:
if not isinstance(valid_size, int):
assert isinstance(valid_size, float) and 0 < valid_size < 1
valid_size = int(len(train_dataset) * valid_size)
valid_dataset = self.train_dataset(valid_transforms)
train_indexes, valid_indexes = self.random_sample_valid_set(
len(train_dataset), valid_size
)
if num_replicas is not None:
train_sampler = MyDistributedSampler(
train_dataset, num_replicas, rank, True, np.array(train_indexes)
)
valid_sampler = MyDistributedSampler(
valid_dataset, num_replicas, rank, True, np.array(valid_indexes)
)
else:
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(
train_indexes
)
valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(
valid_indexes
)
self.train = train_loader_class(
train_dataset,
batch_size=train_batch_size,
sampler=train_sampler,
num_workers=n_worker,
pin_memory=False,
)
self.valid = torch.utils.data.DataLoader(
valid_dataset,
batch_size=test_batch_size,
sampler=valid_sampler,
num_workers=n_worker,
pin_memory=False,
)
else:
if num_replicas is not None:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas, rank
)
self.train = train_loader_class(
train_dataset,
batch_size=train_batch_size,
sampler=train_sampler,
num_workers=n_worker,
pin_memory=True,
)
else:
self.train = train_loader_class(
train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=n_worker,
pin_memory=False,
)
self.valid = None
test_dataset = self.test_dataset(valid_transforms)
if num_replicas is not None:
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset, num_replicas, rank
)
self.test = torch.utils.data.DataLoader(
test_dataset,
batch_size=test_batch_size,
sampler=test_sampler,
num_workers=n_worker,
pin_memory=False,
)
else:
self.test = torch.utils.data.DataLoader(
test_dataset,
batch_size=test_batch_size,
shuffle=True,
num_workers=n_worker,
pin_memory=False,
)
if self.valid is None:
self.valid = self.test
@staticmethod
def name():
return "cifar100"
@property
def data_shape(self):
return 3, self.active_img_size, self.active_img_size # C, H, W
@property
def n_classes(self):
return 100
@property
def save_path(self):
if self._save_path is None:
self._save_path = self.DEFAULT_PATH
if not os.path.exists(self._save_path):
self._save_path = os.path.expanduser("~/dataset/cifar100")
return self._save_path
@property
def data_url(self):
raise ValueError("unable to download %s" % self.name())
def train_dataset(self, _transforms):
return datasets.CIFAR100(self.train_path, train=True, transform=_transforms,download=True)
def test_dataset(self, _transforms):
return datasets.CIFAR100(self.valid_path, train=False, transform=_transforms,download=True)
@property
def train_path(self):
return os.path.join(self.save_path, "train")
@property
def valid_path(self):
return os.path.join(self.save_path, "val")
@property
def normalize(self):
return transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])
def build_train_transform(self, image_size=None, print_log=True):
if image_size is None:
image_size = self.image_size
# random_resize_crop -> random_horizontal_flip
train_transforms = [
transforms.RandomCrop(32,padding=4),
transforms.RandomHorizontalFlip(),
# AutoAugment(),
]
train_transforms += [
transforms.ToTensor(),
# self.normalize,
]
train_transforms = transforms.Compose(train_transforms)
return train_transforms
def build_valid_transform(self, image_size=None):
if image_size is None:
image_size = self.active_img_size
return transforms.Compose([
transforms.ToTensor(),
# self.normalize,
])
def assign_active_img_size(self, new_img_size):
self.active_img_size = new_img_size
if self.active_img_size not in self._valid_transform_dict:
self._valid_transform_dict[
self.active_img_size
] = self.build_valid_transform()
# change the transform of the valid and test set
self.valid.dataset.transform = self._valid_transform_dict[self.active_img_size]
self.test.dataset.transform = self._valid_transform_dict[self.active_img_size]
def build_sub_train_loader(
self, n_images, batch_size, num_worker=None, num_replicas=None, rank=None
):
# used for resetting BN running statistics
if self.__dict__.get("sub_train_%d" % self.active_img_size, None) is None:
if num_worker is None:
num_worker = self.train.num_workers
n_samples = len(self.train.dataset)
g = torch.Generator()
g.manual_seed(DataProvider.SUB_SEED)
rand_indexes = torch.randperm(n_samples, generator=g).tolist()
new_train_dataset = self.train_dataset(
self.build_train_transform(
image_size=self.active_img_size, print_log=False
)
)
chosen_indexes = rand_indexes[:n_images]
if num_replicas is not None:
sub_sampler = MyDistributedSampler(
new_train_dataset,
num_replicas,
rank,
True,
np.array(chosen_indexes),
)
else:
sub_sampler = torch.utils.data.sampler.SubsetRandomSampler(
chosen_indexes
)
sub_data_loader = torch.utils.data.DataLoader(
new_train_dataset,
batch_size=batch_size,
sampler=sub_sampler,
num_workers=num_worker,
pin_memory=False,
)
self.__dict__["sub_train_%d" % self.active_img_size] = []
for images, labels in sub_data_loader:
self.__dict__["sub_train_%d" % self.active_img_size].append(
(images, labels)
)
return self.__dict__["sub_train_%d" % self.active_img_size]
|