File size: 19,568 Bytes
188f311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import random
import time
import json
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from tqdm import tqdm
from attacks.utils import ctx_noparamgrad_and_eval
from robust_loss.rslad import rslad_inner_loss,kl_loss
from robust_loss.trades import trades_loss
from attacks import create_attack
from proard.utils import (
get_net_info,
cross_entropy_loss_with_soft_target,
cross_entropy_with_label_smoothing,
)
from proard.utils import (
AverageMeter,
accuracy,
write_log,
mix_images,
mix_labels,
init_models,
)
from proard.utils import MyRandomResizedCrop
__all__ = ["RunManager"]
class RunManager:
def __init__(
self, path, net, run_config, init=True, measure_latency=None, no_gpu=False
):
self.path = path
self.net = net
self.run_config = run_config
self.best_acc = 0
self.best_robustness = 0
self.start_epoch = 0
os.makedirs(self.path, exist_ok=True)
# move network to GPU if available
if torch.cuda.is_available() and (not no_gpu):
self.device = torch.device("cuda")
self.net = self.net.to(self.device)
cudnn.benchmark = True
else:
self.device = torch.device("cpu")
# initialize model (default)
if init:
init_models(net,run_config.model_init)
# net info
net_info = get_net_info(
self.net, self.run_config.data_provider.data_shape, measure_latency, True
)
with open("%s/net_info.txt" % self.path, "w") as fout:
fout.write(json.dumps(net_info, indent=4) + "\n")
# noinspection PyBroadException
try:
fout.write(self.network.module_str + "\n")
except Exception:
pass
fout.write("%s\n" % self.run_config.data_provider.train.dataset.transform)
fout.write("%s\n" % self.run_config.data_provider.test.dataset.transform)
fout.write("%s\n" % self.network)
self.train_criterion = self.run_config.train_criterion_loss
self.test_criterion = self.run_config.test_criterion_loss
self.kd_criterion = self.run_config.kd_criterion_loss
# optimizer
if self.run_config.no_decay_keys:
keys = self.run_config.no_decay_keys.split("#")
net_params = [
self.network.get_parameters(
keys, mode="exclude"
), # parameters with weight decay
self.network.get_parameters(
keys, mode="include"
), # parameters without weight decay
]
else:
# noinspection PyBroadException
try:
net_params = self.network.weight_parameters()
except Exception:
net_params = []
for param in self.network.parameters():
if param.requires_grad:
net_params.append(param)
self.optimizer = self.run_config.build_optimizer(net_params)
self.net = torch.nn.DataParallel(self.net)
""" save path and log path """
@property
def save_path(self):
if self.__dict__.get("_save_path", None) is None:
save_path = os.path.join(self.path, "checkpoint")
os.makedirs(save_path, exist_ok=True)
self.__dict__["_save_path"] = save_path
return self.__dict__["_save_path"]
@property
def logs_path(self):
if self.__dict__.get("_logs_path", None) is None:
logs_path = os.path.join(self.path, "logs")
os.makedirs(logs_path, exist_ok=True)
self.__dict__["_logs_path"] = logs_path
return self.__dict__["_logs_path"]
@property
def network(self):
return self.net.module if isinstance(self.net, nn.DataParallel) else self.net
def write_log(self, log_str, prefix="valid", should_print=True, mode="a"):
write_log(self.logs_path, log_str, prefix, should_print, mode)
""" save and load models """
def save_model(self, checkpoint=None, is_best=False, model_name=None):
if checkpoint is None:
checkpoint = {"state_dict": self.network.state_dict()}
if model_name is None:
model_name = "checkpoint.pth.tar"
checkpoint[
"dataset"
] = self.run_config.dataset # add `dataset` info to the checkpoint
latest_fname = os.path.join(self.save_path, "latest.txt")
model_path = os.path.join(self.save_path, model_name)
with open(latest_fname, "w") as fout:
fout.write(model_path + "\n")
torch.save(checkpoint, model_path)
if is_best:
best_path = os.path.join(self.save_path, "model_best.pth.tar")
torch.save({"state_dict": checkpoint["state_dict"]}, best_path)
def load_model(self, model_fname=None):
latest_fname = os.path.join(self.save_path, "latest.txt")
if model_fname is None and os.path.exists(latest_fname):
with open(latest_fname, "r") as fin:
model_fname = fin.readline()
if model_fname[-1] == "\n":
model_fname = model_fname[:-1]
# noinspection PyBroadException
try:
if model_fname is None or not os.path.exists(model_fname):
model_fname = "%s/checkpoint.pth.tar" % self.save_path
with open(latest_fname, "w") as fout:
fout.write(model_fname + "\n")
print("=> loading checkpoint '{}'".format(model_fname))
checkpoint = torch.load(model_fname, map_location="cpu")
except Exception:
print("fail to load checkpoint from %s" % self.save_path)
return {}
self.network.load_state_dict(checkpoint["state_dict"])
if "epoch" in checkpoint:
self.start_epoch = checkpoint["epoch"] + 1
if "best_acc" in checkpoint:
self.best_acc = checkpoint["best_acc"]
if "optimizer" in checkpoint:
self.optimizer.load_state_dict(checkpoint["optimizer"])
print("=> loaded checkpoint '{}'".format(model_fname))
return checkpoint
def save_config(self, extra_run_config=None, extra_net_config=None):
"""dump run_config and net_config to the model_folder"""
run_save_path = os.path.join(self.path, "run.config")
if not os.path.isfile(run_save_path):
run_config = self.run_config.config
if extra_run_config is not None:
run_config.update(extra_run_config)
json.dump(run_config, open(run_save_path, "w"), indent=4)
print("Run configs dump to %s" % run_save_path)
try:
net_save_path = os.path.join(self.path, "net.config")
net_config = self.network.config
if extra_net_config is not None:
net_config.update(extra_net_config)
json.dump(net_config, open(net_save_path, "w"), indent=4)
print("Network configs dump to %s" % net_save_path)
except Exception:
print("%s do not support net config" % type(self.network))
""" metric related """
def get_metric_dict(self):
return {
"top1": AverageMeter(),
"top5": AverageMeter(),
"robust1" :AverageMeter(),
"robust5" :AverageMeter(),
}
def update_metric(self, metric_dict, output, output_adv, labels):
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
robust1,robust5 = accuracy(output_adv,labels,topk=(1,5))
metric_dict["top1"].update(acc1[0].item(), output.size(0))
metric_dict["top5"].update(acc5[0].item(), output.size(0))
metric_dict["robust1"].update(robust1[0].item(), output.size(0))
metric_dict["robust5"].update(robust5[0].item(), output.size(0))
def get_metric_vals(self, metric_dict, return_dict=False):
if return_dict:
return {key: metric_dict[key].avg for key in metric_dict}
else:
return [metric_dict[key].avg for key in metric_dict]
def get_metric_names(self):
return "top1", "top5" , "robust1" , "robust5"
""" train and test """
def validate(
self,
epoch=0,
is_test=False,
run_str="",
net=None,
data_loader=None,
no_logs=False,
train_mode=False,
):
if net is None:
net = self.net
if not isinstance(net, nn.DataParallel):
net = nn.DataParallel(net)
if data_loader is None:
data_loader = (
self.run_config.test_loader if is_test else self.run_config.valid_loader
)
if train_mode:
net.train()
else:
net.eval()
if self.run_config.robust_mode:
eval_attack = create_attack(net, self.test_criterion.cuda(), self.run_config.attack_type,self.run_config.epsilon_test,self.run_config.num_steps_test, self.run_config.step_size_test)
losses = AverageMeter()
metric_dict = self.get_metric_dict()
with tqdm(
total=len(data_loader),
desc="Validate Epoch #{} {}".format(epoch + 1, run_str),
disable=no_logs,
) as t:
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(self.device), labels.to(self.device)
# compute output
output = net(images)
if self.run_config.robust_mode:
with ctx_noparamgrad_and_eval(net):
images_adv,_ = eval_attack.perturb(images, labels)
output_adv = net(images_adv)
loss = nn.CrossEntropyLoss()(output_adv,labels)
else:
output_adv = output
loss = nn.CrossEntropyLoss()(output,labels)
# measure accuracy and record loss
self.update_metric(metric_dict, output, output_adv , labels)
losses.update(loss.item(), images.size(0))
t.set_postfix(
{
"loss": losses.avg,
**self.get_metric_vals(metric_dict, return_dict=True),
"img_size": images.size(2),
}
)
t.update(1)
return losses.avg, self.get_metric_vals(metric_dict)
def validate_all_resolution(self, epoch=0, is_test=False, net=None):
if net is None:
net = self.network
if isinstance(self.run_config.data_provider.image_size, list):
img_size_list, loss_list, top1_list, top5_list , robust1_list , robust5_list = [], [], [], [],[],[]
for img_size in self.run_config.data_provider.image_size:
img_size_list.append(img_size)
self.run_config.data_provider.assign_active_img_size(img_size)
self.reset_running_statistics(net=net)
loss, (top1, top5 , robust1,robust5) = self.validate(epoch, is_test, net=net)
loss_list.append(loss)
top1_list.append(top1)
top5_list.append(top5)
robust1_list.append(robust1)
robust5_list.append(robust5)
return img_size_list, loss_list, top1_list, top5_list ,robust1_list ,robust5_list
else:
loss, (top1, top5 , robust1 , robust5) = self.validate(epoch, is_test, net=net)
return (
[self.run_config.data_provider.active_img_size],
[loss],
[top1],
[top5],
[robust1],
[robust5]
)
def train_one_epoch(self, args, epoch, warmup_epochs=0, warmup_lr=0):
# switch to train mode
self.net.train()
MyRandomResizedCrop.EPOCH = epoch # required by elastic resolution
nBatch = len(self.run_config.train_loader)
losses = AverageMeter()
metric_dict = self.get_metric_dict()
data_time = AverageMeter()
with tqdm(
total=nBatch,
desc="{} Train Epoch #{}".format(self.run_config.dataset, epoch + 1),
) as t:
end = time.time()
for i, (images, labels) in enumerate(self.run_config.train_loader):
MyRandomResizedCrop.BATCH = i
data_time.update(time.time() - end)
if epoch < warmup_epochs:
new_lr = self.run_config.warmup_adjust_learning_rate(
self.optimizer,
warmup_epochs * nBatch,
nBatch,
epoch,
i,
warmup_lr,
)
else:
new_lr = self.run_config.adjust_learning_rate(
self.optimizer, epoch - warmup_epochs, i, nBatch
)
images, labels = images.to(self.device), labels.to(self.device)
target = labels
if isinstance(self.run_config.mixup_alpha, float):
# transform data
lam = random.betavariate(
self.run_config.mixup_alpha, self.run_config.mixup_alpha
)
images = mix_images(images, lam)
labels = mix_labels(
labels,
lam,
self.run_config.data_provider.n_classes,
self.run_config.label_smoothing,
)
# soft target
if args.teacher_model is not None:
args.teacher_model.train()
with torch.no_grad():
soft_logits = args.teacher_model(images).detach()
soft_label = F.softmax(soft_logits, dim=1)
# compute output
output = self.net(images)
if args.teacher_model is None:
if self.run_config.robust_mode:
loss = self.train_criterion(self.net,images,labels,self.optimizer,self.run_config.step_size_train,self.run_config.epsilon_train,self.run_config.num_steps_train,self.run_config.beta_train,self.run_config.distance_train)
loss_type = self.run_config.train_criterion
else:
loss = torch.nn.CrossEntropyLoss(output,labels)
loss_type = 'ce'
else:
if self.run_config.robust_mode:
loss = self.kd_criterion(args.teacher_model,self.net,images,labels,self.optimizer,self.run_config.step_size_train,self.run_config.epsilon_train,self.run_config.num_steps_train,self.run_config.beta_train)
loss_type = self.run_config.train_criterion
else:
if args.kd_type == "ce":
kd_loss = cross_entropy_loss_with_soft_target(
output, soft_label
)
else:
kd_loss = F.mse_loss(output, soft_logits)
loss = args.kd_ratio * kd_loss + loss
loss_type = "%.1fkd+ce" % args.kd_ratio
# compute gradient and do SGD step
self.net.zero_grad() # or self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# measure accuracy and record loss
losses.update(loss.item(), images.size(0))
self.update_metric(metric_dict, output, output ,target)
t.set_postfix(
{
"loss": losses.avg,
**self.get_metric_vals(metric_dict, return_dict=True),
"img_size": images.size(2),
"lr": new_lr,
"loss_type": loss_type,
"data_time": data_time.avg,
}
)
t.update(1)
end = time.time()
return losses.avg, self.get_metric_vals(metric_dict)
def train(self, args, warmup_epoch=0, warmup_lr=0):
for epoch in range(self.start_epoch, self.run_config.n_epochs + warmup_epoch):
train_loss, (train_top1, train_top5 , train_robust1 , train_robust5) = self.train_one_epoch(
args, epoch, warmup_epoch, warmup_lr
)
if (epoch + 1) % self.run_config.validation_frequency == 0:
img_size, val_loss, val_acc, val_acc5 ,val_robust, val_robust5 = self.validate_all_resolution(
epoch=epoch, is_test=False
)
is_best = np.mean(val_acc) > self.best_acc
is_best_robust = np.mean(val_robust) > self.best_robustness
self.best_acc = max(self.best_acc, np.mean(val_acc))
self.best_robustness = max(self.best_robustness, np.mean(val_robust))
val_log = "Valid [{0}/{1}]\tloss {2:.3f} \t{7} {3:.3f} ({5:.3f}) \t{8} {4:.3f} ({6:.3f})".format(
epoch + 1 - warmup_epoch,
self.run_config.n_epochs,
np.mean(val_loss),
np.mean(val_acc),
np.mean(val_robust),
self.best_acc,
self.best_robustness,
self.get_metric_names()[0],
self.get_metric_names()[2],
)
val_log += "\t{2} {0:.3f} \tTrain {1} {top1:.3f}\t {3} {robust:.3f} \t loss {train_loss:.3f}\t".format(
np.mean(val_acc5),
*self.get_metric_names(),
top1=train_top1,
robust = train_robust1,
train_loss=train_loss
)
for i_s, v_a in zip(img_size, val_acc):
val_log += "(%d, %.3f), " % (i_s, v_a)
self.write_log(val_log, prefix="valid", should_print=False)
else:
is_best = False
is_best_robust = False
self.save_model(
{
"epoch": epoch,
"best_acc": self.best_acc,
"optimizer": self.optimizer.state_dict(),
"state_dict": self.network.state_dict(),
},
is_best=is_best,
)
def reset_running_statistics(
self, net=None, subset_size=2000, subset_batch_size=200, data_loader=None
):
from proard.classification.elastic_nn.utils import set_running_statistics
if net is None:
net = self.network
if data_loader is None:
data_loader = self.run_config.random_sub_train_loader(
subset_size, subset_batch_size
)
set_running_statistics(net, data_loader)
|