File size: 6,056 Bytes
188f311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
from pymoo.core.individual import Individual
from pymoo.core.problem import Problem
from pymoo.core.sampling import Sampling
from pymoo.core.variable import Choice
__all__ = ["individual_to_arch_mbv","DynIndividual_mbv","DynProblem_mbv","individual_to_arch_res","DynIndividual_res","DynProblem_res","DynSampling","DynRandomSampler"]
def individual_to_arch_mbv(population, n_blocks):
    archs = []
    for individual in population:
        archs.append(
            {
                "ks": individual[0:n_blocks],
                "e": individual[n_blocks : 2 * n_blocks],
                "d": individual[2 * n_blocks : -1],
                "image_size": individual[-1:],
            }
        )    
    return archs
class DynIndividual_mbv(Individual):
    def __init__(self, individual, accuracy_predictor,Robustness_predictor, config=None, **kwargs):
        super().__init__(config=None, **kwargs)
        self.X = np.concatenate(
            (
                individual[0]["ks"],
                individual[0]["e"],
                individual[0]["d"],
                individual[0]["image_size"],
            )
        )
        self.flops = individual[1]
        self.accuracy = 100 - accuracy_predictor.predict_acc([individual[0]])
        self.robustness = 100 - Robustness_predictor.predict_rob([individual[0]])
        self.F = np.concatenate(([self.flops], [self.accuracy.squeeze().cpu().detach().numpy()],[self.robustness.squeeze().cpu().detach().numpy()]))



class DynProblem_mbv(Problem):
    def __init__(self, efficiency_predictor, accuracy_predictor, robustness_predictor, num_blocks, num_stages, search_vars):
        self.ks = Choice(options=search_vars.get('ks'))
        self.e = Choice(options=search_vars.get('e'))
        self.d = Choice(options=search_vars.get('d'))
        self.r = Choice(options=search_vars.get('image_size'))
        
        super().__init__(
            vars= dict(zip(range(len(num_blocks * [self.ks] + num_blocks * [self.e] + num_stages * [self.d] + [self.r])), num_blocks * [self.ks] + num_blocks * [self.e] + num_stages * [self.d] + [self.r])),
            n_obj=3,
            n_constr=0,
        )
        self.efficiency_predictor = efficiency_predictor
        self.accuracy_predictor = accuracy_predictor
        self.robustness_predictor = robustness_predictor
        self.blocks = num_blocks
        self.stages = num_stages
        self.search_vars = search_vars

    def _evaluate(self, x, out, *args, **kwargs):
        f1=[]
        # x.shape = (population_size, n_var) = (100, 4)
        arch = individual_to_arch_mbv(x, self.blocks)
        for arc in arch:
            f1.append(self.efficiency_predictor.get_efficiency(arc))      
        f2 = 100 - self.accuracy_predictor.predict_acc(arch).detach().cpu().numpy()
        f3 = 100 - self.robustness_predictor.predict_rob(arch).detach().cpu().numpy()
        out["F"] = np.column_stack([f1, f2,f3])


def individual_to_arch_res(population, n_blocks):
    archs = []
    for individual in population:
        archs.append(
            {
                "e": individual[n_blocks : 2 * n_blocks],
                "d": individual[2 * n_blocks : -1],
                "w": individual[0:n_blocks],
                "r": individual[-1:],
            }
        )
    return archs
class DynIndividual_res(Individual):
    def __init__(self, individual, accuracy_predictor,Robustness_predictor, config=None, **kwargs):
        super().__init__(config=None, **kwargs)
        self.X = np.concatenate(
            (
                individual[0]["e"],
                individual[0]["d"],
                 individual[0]["w"],
                [individual[0]["image_size"]],
            )
        )
        self.flops = individual[1]
        self.accuracy = 100 - accuracy_predictor.predict_acc([individual[0]])
        self.robustness = 100 - Robustness_predictor.predict_rob([individual[0]])
        self.F = np.concatenate(([self.flops], [self.accuracy.squeeze().cpu().detach().numpy()],[self.robustness.squeeze().cpu().detach().numpy()]))



class DynProblem_res(Problem):
    def __init__(self, efficiency_predictor, accuracy_predictor, robustness_predictor, num_blocks, num_stages, search_vars):
        self.e = Choice(options=search_vars.get('e'))
        self.d = Choice(options=search_vars.get('d'))
        self.w = Choice(options=search_vars.get('w'))
        self.r = Choice(options=search_vars.get('image_size'))
        super().__init__(
            vars= dict(zip(range(len(num_blocks * [self.ks] + num_blocks * [self.e] + num_stages * [self.d] + [self.r])), num_blocks * [self.ks] + num_blocks * [self.e] + num_stages * [self.d] + [self.r])),
            n_obj=3,
            n_constr=0,
        )
        self.efficiency_predictor = efficiency_predictor
        self.accuracy_predictor = accuracy_predictor
        self.robustness_predictor = robustness_predictor
        self.blocks = num_blocks
        self.stages = num_stages
        self.search_vars = search_vars
        
    def _evaluate(self, x, out, *args, **kwargs):
        f1={}
        # x.shape = (population_size, n_var) = (100, 4)
        arch = individual_to_arch_res(x, self.blocks)
        for arc in arch:
            f1.append(self.efficiency_predictor.get_efficiency(arc))
        f2 = 100 - self.accuracy_predictor.predict_acc(arch)
        f3 = 100 - self.robustness_predictor.predict_rob(arch)
        out["F"] = np.column_stack([f1, f2,f3])



class DynSampling(Sampling):
    def _do(self, problem, n_samples, **kwargs):
        return [
            [np.random.choice(var.options) for key,var in problem.vars.items()]
            for _ in range(n_samples)
        ]


class DynRandomSampler:
    def __init__(self, arch_manager, efficiency_predictor):
        self.arch_manager = arch_manager
        self.efficiency_predictor = efficiency_predictor

    def random_sample(self):
        sample = self.arch_manager.random_sample_arch()
        efficiency = self.efficiency_predictor.get_efficiency(sample)
        return sample, efficiency