File size: 3,235 Bytes
381fcd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import numpy as np

# def attack_pgd(model,train_batch_data,train_batch_labels,attack_iters=10,step_size=2/255.0,epsilon=8.0/255.0):
#     ce_loss = torch.nn.CrossEntropyLoss().cuda()
#     train_ifgsm_data = train_batch_data.detach() + torch.zeros_like(train_batch_data).uniform_(-epsilon,epsilon)
#     train_ifgsm_data = torch.clamp(train_ifgsm_data,0,1)
#     for i in range(attack_iters):
#         train_ifgsm_data.requires_grad_()
#         logits = model(train_ifgsm_data)
#         loss = ce_loss(logits,train_batch_labels.cuda())
#         loss.backward()
#         train_grad = train_ifgsm_data.grad.detach()
#         train_ifgsm_data = train_ifgsm_data + step_size*torch.sign(train_grad)
#         train_ifgsm_data = torch.clamp(train_ifgsm_data.detach(),0,1)
#         train_ifgsm_pert = train_ifgsm_data - train_batch_data
#         train_ifgsm_pert = torch.clamp(train_ifgsm_pert,-epsilon,epsilon)
#         train_ifgsm_data = train_batch_data + train_ifgsm_pert
#         train_ifgsm_data = train_ifgsm_data.detach()
#     return train_ifgsm_data
def kl_loss(a,b):
    loss = -a*b + torch.log(b+1e-5)*b
    return loss
def rslad_inner_loss(model,
                teacher_logits,
                x_natural,
                y,
                optimizer,
                step_size=0.0078,
                epsilon=0.031,
                perturb_steps=10,
                beta=6.0):
    # define KL-loss
    criterion_kl = nn.KLDivLoss(size_average=False,reduce=False)
    model.eval()
    batch_size = len(x_natural)
    # generate adversarial example
    x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()

    for _ in range(perturb_steps):
        x_adv.requires_grad_()
        with torch.enable_grad():
            loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1),
                                       F.softmax(teacher_logits, dim=1))
            loss_kl = torch.sum(loss_kl)
        grad = torch.autograd.grad(loss_kl, [x_adv])[0]
        x_adv = x_adv.detach() + step_size * torch.sign(grad.detach())
        x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon)
        x_adv = torch.clamp(x_adv, 0.0, 1.0)

    model.train()

    x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False)
    # zero gradient
    # optimizer.zero_grad()
    # logits = model(x_adv)
    return x_adv
def rslad_loss(teacher_model,model,x_natural,y,optimizer,step_size=0.0078,
                epsilon=0.031,
                perturb_steps=10,
                beta=6.0):
    teacher_logits = teacher_model(x_natural)
    x_adv = rslad_inner_loss(model,teacher_logits,x_natural,y,optimizer,step_size,epsilon,perturb_steps)
    adv_logits = model(x_adv)
    model.train()
    nat_logits = model(x_natural)
    kl_Loss1 = kl_loss(F.log_softmax(adv_logits,dim=1),F.softmax(teacher_logits.detach(),dim=1))
    kl_Loss2 = kl_loss(F.log_softmax(nat_logits,dim=1),F.softmax(teacher_logits.detach(),dim=1))
    kl_Loss1 = torch.mean(kl_Loss1)
    kl_Loss2 = torch.mean(kl_Loss2)
    loss = 5/6.0*kl_Loss1 + 1/6.0*kl_Loss2
    return loss