# Once for All: Train One Network and Specialize it for Efficient Deployment # Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han # International Conference on Learning Representations (ICLR), 2020. import os import random import time import json import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim from tqdm import tqdm from attacks.utils import ctx_noparamgrad_and_eval from robust_loss.rslad import rslad_inner_loss,kl_loss from robust_loss.trades import trades_loss from attacks import create_attack from proard.utils import ( get_net_info, cross_entropy_loss_with_soft_target, cross_entropy_with_label_smoothing, ) from proard.utils import ( AverageMeter, accuracy, write_log, mix_images, mix_labels, init_models, ) from proard.utils import MyRandomResizedCrop __all__ = ["RunManager"] class RunManager: def __init__( self, path, net, run_config, init=True, measure_latency=None, no_gpu=False ): self.path = path self.net = net self.run_config = run_config self.best_acc = 0 self.best_robustness = 0 self.start_epoch = 0 os.makedirs(self.path, exist_ok=True) # move network to GPU if available if torch.cuda.is_available() and (not no_gpu): self.device = torch.device("cuda") self.net = self.net.to(self.device) cudnn.benchmark = True else: self.device = torch.device("cpu") # initialize model (default) if init: init_models(net,run_config.model_init) # net info net_info = get_net_info( self.net, self.run_config.data_provider.data_shape, measure_latency, True ) with open("%s/net_info.txt" % self.path, "w") as fout: fout.write(json.dumps(net_info, indent=4) + "\n") # noinspection PyBroadException try: fout.write(self.network.module_str + "\n") except Exception: pass fout.write("%s\n" % self.run_config.data_provider.train.dataset.transform) fout.write("%s\n" % self.run_config.data_provider.test.dataset.transform) fout.write("%s\n" % self.network) self.train_criterion = self.run_config.train_criterion_loss self.test_criterion = self.run_config.test_criterion_loss self.kd_criterion = self.run_config.kd_criterion_loss # optimizer if self.run_config.no_decay_keys: keys = self.run_config.no_decay_keys.split("#") net_params = [ self.network.get_parameters( keys, mode="exclude" ), # parameters with weight decay self.network.get_parameters( keys, mode="include" ), # parameters without weight decay ] else: # noinspection PyBroadException try: net_params = self.network.weight_parameters() except Exception: net_params = [] for param in self.network.parameters(): if param.requires_grad: net_params.append(param) self.optimizer = self.run_config.build_optimizer(net_params) self.net = torch.nn.DataParallel(self.net) """ save path and log path """ @property def save_path(self): if self.__dict__.get("_save_path", None) is None: save_path = os.path.join(self.path, "checkpoint") os.makedirs(save_path, exist_ok=True) self.__dict__["_save_path"] = save_path return self.__dict__["_save_path"] @property def logs_path(self): if self.__dict__.get("_logs_path", None) is None: logs_path = os.path.join(self.path, "logs") os.makedirs(logs_path, exist_ok=True) self.__dict__["_logs_path"] = logs_path return self.__dict__["_logs_path"] @property def network(self): return self.net.module if isinstance(self.net, nn.DataParallel) else self.net def write_log(self, log_str, prefix="valid", should_print=True, mode="a"): write_log(self.logs_path, log_str, prefix, should_print, mode) """ save and load models """ def save_model(self, checkpoint=None, is_best=False, model_name=None): if checkpoint is None: checkpoint = {"state_dict": self.network.state_dict()} if model_name is None: model_name = "checkpoint.pth.tar" checkpoint[ "dataset" ] = self.run_config.dataset # add `dataset` info to the checkpoint latest_fname = os.path.join(self.save_path, "latest.txt") model_path = os.path.join(self.save_path, model_name) with open(latest_fname, "w") as fout: fout.write(model_path + "\n") torch.save(checkpoint, model_path) if is_best: best_path = os.path.join(self.save_path, "model_best.pth.tar") torch.save({"state_dict": checkpoint["state_dict"]}, best_path) def load_model(self, model_fname=None): latest_fname = os.path.join(self.save_path, "latest.txt") if model_fname is None and os.path.exists(latest_fname): with open(latest_fname, "r") as fin: model_fname = fin.readline() if model_fname[-1] == "\n": model_fname = model_fname[:-1] # noinspection PyBroadException try: if model_fname is None or not os.path.exists(model_fname): model_fname = "%s/checkpoint.pth.tar" % self.save_path with open(latest_fname, "w") as fout: fout.write(model_fname + "\n") print("=> loading checkpoint '{}'".format(model_fname)) checkpoint = torch.load(model_fname, map_location="cpu") except Exception: print("fail to load checkpoint from %s" % self.save_path) return {} self.network.load_state_dict(checkpoint["state_dict"]) if "epoch" in checkpoint: self.start_epoch = checkpoint["epoch"] + 1 if "best_acc" in checkpoint: self.best_acc = checkpoint["best_acc"] if "optimizer" in checkpoint: self.optimizer.load_state_dict(checkpoint["optimizer"]) print("=> loaded checkpoint '{}'".format(model_fname)) return checkpoint def save_config(self, extra_run_config=None, extra_net_config=None): """dump run_config and net_config to the model_folder""" run_save_path = os.path.join(self.path, "run.config") if not os.path.isfile(run_save_path): run_config = self.run_config.config if extra_run_config is not None: run_config.update(extra_run_config) json.dump(run_config, open(run_save_path, "w"), indent=4) print("Run configs dump to %s" % run_save_path) try: net_save_path = os.path.join(self.path, "net.config") net_config = self.network.config if extra_net_config is not None: net_config.update(extra_net_config) json.dump(net_config, open(net_save_path, "w"), indent=4) print("Network configs dump to %s" % net_save_path) except Exception: print("%s do not support net config" % type(self.network)) """ metric related """ def get_metric_dict(self): return { "top1": AverageMeter(), "top5": AverageMeter(), "robust1" :AverageMeter(), "robust5" :AverageMeter(), } def update_metric(self, metric_dict, output, output_adv, labels): acc1, acc5 = accuracy(output, labels, topk=(1, 5)) robust1,robust5 = accuracy(output_adv,labels,topk=(1,5)) metric_dict["top1"].update(acc1[0].item(), output.size(0)) metric_dict["top5"].update(acc5[0].item(), output.size(0)) metric_dict["robust1"].update(robust1[0].item(), output.size(0)) metric_dict["robust5"].update(robust5[0].item(), output.size(0)) def get_metric_vals(self, metric_dict, return_dict=False): if return_dict: return {key: metric_dict[key].avg for key in metric_dict} else: return [metric_dict[key].avg for key in metric_dict] def get_metric_names(self): return "top1", "top5" , "robust1" , "robust5" """ train and test """ def validate( self, epoch=0, is_test=False, run_str="", net=None, data_loader=None, no_logs=False, train_mode=False, ): if net is None: net = self.net if not isinstance(net, nn.DataParallel): net = nn.DataParallel(net) if data_loader is None: data_loader = ( self.run_config.test_loader if is_test else self.run_config.valid_loader ) if train_mode: net.train() else: net.eval() if self.run_config.robust_mode: eval_attack = create_attack(net, self.test_criterion.cuda(), self.run_config.attack_type,self.run_config.epsilon_test,self.run_config.num_steps_test, self.run_config.step_size_test) losses = AverageMeter() metric_dict = self.get_metric_dict() with tqdm( total=len(data_loader), desc="Validate Epoch #{} {}".format(epoch + 1, run_str), disable=no_logs, ) as t: for i, (images, labels) in enumerate(data_loader): images, labels = images.to(self.device), labels.to(self.device) # compute output output = net(images) if self.run_config.robust_mode: with ctx_noparamgrad_and_eval(net): images_adv,_ = eval_attack.perturb(images, labels) output_adv = net(images_adv) loss = nn.CrossEntropyLoss()(output_adv,labels) else: output_adv = output loss = nn.CrossEntropyLoss()(output,labels) # measure accuracy and record loss self.update_metric(metric_dict, output, output_adv , labels) losses.update(loss.item(), images.size(0)) t.set_postfix( { "loss": losses.avg, **self.get_metric_vals(metric_dict, return_dict=True), "img_size": images.size(2), } ) t.update(1) return losses.avg, self.get_metric_vals(metric_dict) def validate_all_resolution(self, epoch=0, is_test=False, net=None): if net is None: net = self.network if isinstance(self.run_config.data_provider.image_size, list): img_size_list, loss_list, top1_list, top5_list , robust1_list , robust5_list = [], [], [], [],[],[] for img_size in self.run_config.data_provider.image_size: img_size_list.append(img_size) self.run_config.data_provider.assign_active_img_size(img_size) self.reset_running_statistics(net=net) loss, (top1, top5 , robust1,robust5) = self.validate(epoch, is_test, net=net) loss_list.append(loss) top1_list.append(top1) top5_list.append(top5) robust1_list.append(robust1) robust5_list.append(robust5) return img_size_list, loss_list, top1_list, top5_list ,robust1_list ,robust5_list else: loss, (top1, top5 , robust1 , robust5) = self.validate(epoch, is_test, net=net) return ( [self.run_config.data_provider.active_img_size], [loss], [top1], [top5], [robust1], [robust5] ) def train_one_epoch(self, args, epoch, warmup_epochs=0, warmup_lr=0): # switch to train mode self.net.train() MyRandomResizedCrop.EPOCH = epoch # required by elastic resolution nBatch = len(self.run_config.train_loader) losses = AverageMeter() metric_dict = self.get_metric_dict() data_time = AverageMeter() with tqdm( total=nBatch, desc="{} Train Epoch #{}".format(self.run_config.dataset, epoch + 1), ) as t: end = time.time() for i, (images, labels) in enumerate(self.run_config.train_loader): MyRandomResizedCrop.BATCH = i data_time.update(time.time() - end) if epoch < warmup_epochs: new_lr = self.run_config.warmup_adjust_learning_rate( self.optimizer, warmup_epochs * nBatch, nBatch, epoch, i, warmup_lr, ) else: new_lr = self.run_config.adjust_learning_rate( self.optimizer, epoch - warmup_epochs, i, nBatch ) images, labels = images.to(self.device), labels.to(self.device) target = labels if isinstance(self.run_config.mixup_alpha, float): # transform data lam = random.betavariate( self.run_config.mixup_alpha, self.run_config.mixup_alpha ) images = mix_images(images, lam) labels = mix_labels( labels, lam, self.run_config.data_provider.n_classes, self.run_config.label_smoothing, ) # soft target if args.teacher_model is not None: args.teacher_model.train() with torch.no_grad(): soft_logits = args.teacher_model(images).detach() soft_label = F.softmax(soft_logits, dim=1) # compute output output = self.net(images) if args.teacher_model is None: if self.run_config.robust_mode: loss = self.train_criterion(self.net,images,labels,self.optimizer,self.run_config.step_size_train,self.run_config.epsilon_train,self.run_config.num_steps_train,self.run_config.beta_train,self.run_config.distance_train) loss_type = self.run_config.train_criterion else: loss = torch.nn.CrossEntropyLoss(output,labels) loss_type = 'ce' else: if self.run_config.robust_mode: loss = self.kd_criterion(args.teacher_model,self.net,images,labels,self.optimizer,self.run_config.step_size_train,self.run_config.epsilon_train,self.run_config.num_steps_train,self.run_config.beta_train) loss_type = self.run_config.train_criterion else: if args.kd_type == "ce": kd_loss = cross_entropy_loss_with_soft_target( output, soft_label ) else: kd_loss = F.mse_loss(output, soft_logits) loss = args.kd_ratio * kd_loss + loss loss_type = "%.1fkd+ce" % args.kd_ratio # compute gradient and do SGD step self.net.zero_grad() # or self.optimizer.zero_grad() loss.backward() self.optimizer.step() # measure accuracy and record loss losses.update(loss.item(), images.size(0)) self.update_metric(metric_dict, output, output ,target) t.set_postfix( { "loss": losses.avg, **self.get_metric_vals(metric_dict, return_dict=True), "img_size": images.size(2), "lr": new_lr, "loss_type": loss_type, "data_time": data_time.avg, } ) t.update(1) end = time.time() return losses.avg, self.get_metric_vals(metric_dict) def train(self, args, warmup_epoch=0, warmup_lr=0): for epoch in range(self.start_epoch, self.run_config.n_epochs + warmup_epoch): train_loss, (train_top1, train_top5 , train_robust1 , train_robust5) = self.train_one_epoch( args, epoch, warmup_epoch, warmup_lr ) if (epoch + 1) % self.run_config.validation_frequency == 0: img_size, val_loss, val_acc, val_acc5 ,val_robust, val_robust5 = self.validate_all_resolution( epoch=epoch, is_test=False ) is_best = np.mean(val_acc) > self.best_acc is_best_robust = np.mean(val_robust) > self.best_robustness self.best_acc = max(self.best_acc, np.mean(val_acc)) self.best_robustness = max(self.best_robustness, np.mean(val_robust)) val_log = "Valid [{0}/{1}]\tloss {2:.3f} \t{7} {3:.3f} ({5:.3f}) \t{8} {4:.3f} ({6:.3f})".format( epoch + 1 - warmup_epoch, self.run_config.n_epochs, np.mean(val_loss), np.mean(val_acc), np.mean(val_robust), self.best_acc, self.best_robustness, self.get_metric_names()[0], self.get_metric_names()[2], ) val_log += "\t{2} {0:.3f} \tTrain {1} {top1:.3f}\t {3} {robust:.3f} \t loss {train_loss:.3f}\t".format( np.mean(val_acc5), *self.get_metric_names(), top1=train_top1, robust = train_robust1, train_loss=train_loss ) for i_s, v_a in zip(img_size, val_acc): val_log += "(%d, %.3f), " % (i_s, v_a) self.write_log(val_log, prefix="valid", should_print=False) else: is_best = False is_best_robust = False self.save_model( { "epoch": epoch, "best_acc": self.best_acc, "optimizer": self.optimizer.state_dict(), "state_dict": self.network.state_dict(), }, is_best=is_best, ) def reset_running_statistics( self, net=None, subset_size=2000, subset_batch_size=200, data_loader=None ): from proard.classification.elastic_nn.utils import set_running_statistics if net is None: net = self.network if data_loader is None: data_loader = self.run_config.random_sub_train_loader( subset_size, subset_batch_size ) set_running_statistics(net, data_loader)