Spaces:
Running
on
Zero
Running
on
Zero
| from __future__ import annotations | |
| import os | |
| import os.path as osp | |
| from collections import defaultdict | |
| import time | |
| from mmpose.apis.inference import batch_inference_pose_model | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import scipy.signal as signal | |
| from ultralytics import YOLO | |
| from mmpose.apis import ( | |
| init_pose_model, | |
| get_track_id, | |
| vis_pose_result, | |
| ) | |
| ROOT_DIR = osp.abspath(f"{__file__}/../../") | |
| VIT_DIR = osp.join(ROOT_DIR, "third-party/ViTPose") | |
| VIS_THRESH = 0.5 | |
| BBOX_CONF = 0.5 | |
| TRACKING_THR = 0.1 | |
| MINIMUM_FRMAES = 15 | |
| MINIMUM_JOINTS = 6 | |
| class DetectionModel(object): | |
| def __init__(self, pose_model_ckpt, device, with_tracker=True): | |
| # ViTPose | |
| pose_model_cfg = osp.join(VIT_DIR, 'configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/ViTPose_huge_wholebody_256x192.py') | |
| #'vitpose-h-multi-coco.pth') | |
| self.pose_model = init_pose_model(pose_model_cfg, pose_model_ckpt, device=device) | |
| # YOLO | |
| bbox_model_ckpt = osp.join(ROOT_DIR, 'checkpoints', 'yolov8x.pt') | |
| if with_tracker: | |
| self.bbox_model = YOLO(bbox_model_ckpt) | |
| else: | |
| self.bbox_model = None | |
| self.device = device | |
| self.initialize_tracking() | |
| def initialize_tracking(self, ): | |
| self.next_id = 0 | |
| self.frame_id = 0 | |
| self.pose_results_last = [] | |
| self.tracking_results = { | |
| 'id': [], | |
| 'frame_id': [], | |
| 'bbox': [], | |
| } | |
| def xyxy_to_cxcys(self, bbox, s_factor=1.05): | |
| cx, cy = bbox[[0, 2]].mean(), bbox[[1, 3]].mean() | |
| scale = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 200 * s_factor | |
| return np.array([[cx, cy, scale]]) | |
| def compute_bboxes_from_keypoints(self, s_factor=1.2): | |
| X = self.tracking_results['keypoints'].copy() | |
| mask = X[..., -1] > VIS_THRESH | |
| bbox = np.zeros((len(X), 3)) | |
| for i, (kp, m) in enumerate(zip(X, mask)): | |
| bb = [kp[m, 0].min(), kp[m, 1].min(), | |
| kp[m, 0].max(), kp[m, 1].max()] | |
| cx, cy = [(bb[2]+bb[0])/2, (bb[3]+bb[1])/2] | |
| bb_w = bb[2] - bb[0] | |
| bb_h = bb[3] - bb[1] | |
| s = np.stack((bb_w, bb_h)).max() | |
| bb = np.array((cx, cy, s)) | |
| bbox[i] = bb | |
| bbox[:, 2] = bbox[:, 2] * s_factor / 200.0 | |
| self.tracking_results['bbox'] = bbox | |
| def compute_bbox(self, img): | |
| bboxes = self.bbox_model.predict( | |
| img, device=self.device, classes=0, conf=BBOX_CONF, save=False, verbose=False | |
| )[0].boxes.xyxy.detach().cpu().numpy() | |
| bboxes = [{'bbox': bbox} for bbox in bboxes] | |
| imgs = [img for _ in range(len(bboxes))] | |
| return bboxes, imgs | |
| def batch_detection(self, bboxes, imgs, batch_size=32): | |
| all_poses = [] | |
| all_bboxes = [] | |
| for i in range(0, len(bboxes), batch_size): | |
| poses, bbox_xyxy = batch_inference_pose_model( | |
| self.pose_model, | |
| imgs[i:i+batch_size], | |
| bboxes[i:i+batch_size], | |
| return_heatmap=False) | |
| all_poses.append(poses) | |
| all_bboxes.append(bbox_xyxy) | |
| all_poses = np.concatenate(all_poses) | |
| all_bboxes = np.concatenate(all_bboxes) | |
| return all_poses, all_bboxes | |
| def track(self, img, fps, length): | |
| # bbox detection | |
| bboxes = self.bbox_model.predict( | |
| img, device=self.device, classes=0, conf=BBOX_CONF, save=False, verbose=False | |
| )[0].boxes.xyxy.detach().cpu().numpy() | |
| pose_results = [{'bbox': bbox} for bbox in bboxes] | |
| pose_results, self.next_id = get_track_id( | |
| pose_results, | |
| self.pose_results_last, | |
| self.next_id, | |
| use_oks=False, | |
| tracking_thr=TRACKING_THR, | |
| use_one_euro=True, | |
| fps=fps) | |
| for pose_result in pose_results: | |
| _id = pose_result['track_id'] | |
| xyxy = pose_result['bbox'] | |
| bbox = xyxy# self.xyxy_to_cxcys(xyxy) | |
| self.tracking_results['id'].append(_id) | |
| self.tracking_results['frame_id'].append(self.frame_id) | |
| self.tracking_results['bbox'].append(bbox) | |
| self.frame_id += 1 | |
| self.pose_results_last = pose_results | |
| def process(self, fps): | |
| for key in ['id', 'frame_id', 'bbox']: | |
| self.tracking_results[key] = np.array(self.tracking_results[key]) | |
| #self.compute_bboxes_from_keypoints() | |
| output = defaultdict(lambda: defaultdict(list)) | |
| ids = np.unique(self.tracking_results['id']) | |
| for _id in ids: | |
| idxs = np.where(self.tracking_results['id'] == _id)[0] | |
| for key, val in self.tracking_results.items(): | |
| if key == 'id': continue | |
| output[_id][key] = val[idxs] | |
| # Smooth bounding box detection | |
| ids = list(output.keys()) | |
| for _id in ids: | |
| if len(output[_id]['bbox']) < MINIMUM_FRMAES: | |
| del output[_id] | |
| continue | |
| kernel = int(int(fps/2) / 2) * 2 + 1 | |
| smoothed_bbox = np.array([signal.medfilt(param, kernel) for param in output[_id]['bbox'].T]).T | |
| output[_id]['bbox'] = smoothed_bbox | |
| return output | |
| def visualize(self, img, pose_results): | |
| vis_img = vis_pose_result( | |
| self.pose_model, | |
| img, | |
| pose_results, | |
| dataset=self.pose_model.cfg.data['test']['type'], | |
| dataset_info = None, #self.pose_model.cfg.data['test'].get('dataset_info', None), | |
| kpt_score_thr=0.3, | |
| radius=4, | |
| thickness=1, | |
| show=False | |
| ) | |
| return vis_img |