File size: 3,862 Bytes
9c4b1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
'''                                        
Copyright 2024 Image Processing Research Group of University Federico
II of Naples ('GRIP-UNINA'). All rights reserved.
                        
Licensed under the Apache License, Version 2.0 (the "License");       
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at                    
                                           
    http://www.apache.org/licenses/LICENSE-2.0
                                                      
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,    
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.                         
See the License for the specific language governing permissions and
limitations under the License.
'''

import torch
import torch.nn as nn
import torch.nn.functional as F
import open_clip
from .resnet_mod import ChannelLinear

dict_pretrain = {
    'clipL14openai'     : ('ViT-L-14', 'openai'),
    'clipL14laion400m'  : ('ViT-L-14', 'laion400m_e32'),
    'clipL14laion2B'    : ('ViT-L-14', 'laion2b_s32b_b82k'),
    'clipL14datacomp'   : ('ViT-L-14', 'laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K', 'open_clip_pytorch_model.bin'),
    'clipL14commonpool' : ('ViT-L-14', "laion/CLIP-ViT-L-14-CommonPool.XL-s13B-b90K", 'open_clip_pytorch_model.bin'),
    'clipaL14datacomp'  : ('ViT-L-14-CLIPA', 'datacomp1b'),
    'cocaL14laion2B'    : ('coca_ViT-L-14', 'laion2b_s13b_b90k'),
    'clipg14laion2B'    : ('ViT-g-14', 'laion2b_s34b_b88k'),
    'eva2L14merged2b'   : ('EVA02-L-14', 'merged2b_s4b_b131k'),
    'clipB16laion2B'    : ('ViT-B-16', 'laion2b_s34b_b88k'),
}


class OpenClipLinear(nn.Module):
    def __init__(self, num_classes=1, pretrain='clipL14commonpool', normalize=True, next_to_last=False):
        super(OpenClipLinear, self).__init__()
        
        # Modified to handle download failures gracefully
        # The checkpoint only contains fc weights, so we need the pretrained backbone
        if len(dict_pretrain[pretrain])==2:
            try:
                backbone = open_clip.create_model(dict_pretrain[pretrain][0], pretrained=dict_pretrain[pretrain][1])
            except Exception as e:
                print(f"WARNING: Could not download pretrained weights ({e}). Using random initialization.")
                backbone = open_clip.create_model(dict_pretrain[pretrain][0], pretrained=None)
        else:
            try:
                from huggingface_hub import hf_hub_download
                backbone = open_clip.create_model(dict_pretrain[pretrain][0], pretrained=hf_hub_download(*dict_pretrain[pretrain][1:]))
            except Exception as e:
                print(f"WARNING: Could not download pretrained weights ({e}). Using random initialization.")
                backbone = open_clip.create_model(dict_pretrain[pretrain][0], pretrained=None)
        
        if next_to_last:
            self.num_features = backbone.visual.proj.shape[0]
            backbone.visual.proj = None
        else:
            self.num_features = backbone.visual.output_dim
        
        self.bb = [backbone, ]
        self.normalize = normalize
        
        self.fc = ChannelLinear(self.num_features, num_classes)
        torch.nn.init.normal_(self.fc.weight.data, 0.0, 0.02)

    def to(self, *args, **kwargs):
        self.bb[0].to(*args, **kwargs)
        super(OpenClipLinear, self).to(*args, **kwargs)
        return self

    def forward_features(self, x):
        with torch.no_grad():
            self.bb[0].eval()
            features = self.bb[0].encode_image(x, normalize=self.normalize)
        return features

    def forward_head(self, x):
        return self.fc(x)

    def forward(self, x):
        return self.forward_head(self.forward_features(x))