Spaces:
Sleeping
Sleeping
File size: 12,636 Bytes
7382f7a 3fdaf15 7382f7a 3fdaf15 7382f7a 3fdaf15 7382f7a 3fdaf15 7382f7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
"""
Gradio UI для предсказания экзопланет
"""
import gradio as gr
import pandas as pd
import joblib
import os
import time
from mapping import ColumnMapper, load_training_columns
from dotenv import load_dotenv
# Загружаем переменные окружения из .env файла
load_dotenv()
# Константы
TRAINING_CSV_PATH = "cumulative_2025.10.03_08.34.41.csv"
MODEL_PATH = "exoplanet_detector.joblib"
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY", "")
# Загружаем модель и колонки тренировочного датасета
model = joblib.load(MODEL_PATH)
training_columns = load_training_columns(TRAINING_CSV_PATH)
# Инициализируем маппер
mapper = ColumnMapper(api_key=TOGETHER_API_KEY)
def predict_exoplanets(uploaded_file):
"""
Process uploaded file and return predictions
Args:
uploaded_file: Uploaded CSV file
Returns:
Tuple (results, mapping info, statistics)
"""
start_time = time.time()
try:
# Load dataset
if uploaded_file is None:
return None, "Error: Please upload a CSV file", None
# Read uploaded file with robust error handling
try:
df_uploaded = pd.read_csv(uploaded_file.name, comment='#', low_memory=False)
except Exception as e:
try:
# Try with different encoding
df_uploaded = pd.read_csv(uploaded_file.name, comment='#', encoding='latin1', low_memory=False)
except Exception as e2:
return None, f"Error reading CSV file: {str(e)}\nAlternative attempt: {str(e2)}", None
# Ensure all columns are properly formatted (no multi-dimensional data)
for col in df_uploaded.columns:
# Check if column contains lists or arrays
if df_uploaded[col].dtype == 'object':
first_val = df_uploaded[col].dropna().iloc[0] if len(df_uploaded[col].dropna()) > 0 else None
if isinstance(first_val, (list, tuple)):
# Flatten lists/tuples - take first element
df_uploaded[col] = df_uploaded[col].apply(lambda x: x[0] if isinstance(x, (list, tuple)) and len(x) > 0 else x)
info_msg = f"Loaded rows: {len(df_uploaded)}\n"
info_msg += f"Columns in uploaded dataset: {len(df_uploaded.columns)}\n\n"
# Apply column mapping
mapping_start = time.time()
info_msg += "Performing column mapping via Llama...\n\n"
df_mapped, mapping, mapping_info = mapper.map_dataset(df_uploaded, training_columns)
mapping_time = time.time() - mapping_start
info_msg += mapping_info + "\n"
info_msg += f"Mapping time: {mapping_time:.2f} sec\n\n"
# Get features expected by the model
try:
expected_features = list(model.feature_names_in_)
info_msg += f"Model expects {len(expected_features)} features\n\n"
except AttributeError:
# If feature_names_in_ is not available, use all columns except targets
target_cols = ['koi_disposition', 'koi_pdisposition']
expected_features = [col for col in training_columns if col not in target_cols]
info_msg += f"Using {len(expected_features)} features from training dataset\n\n"
# Prepare X with correct columns
info_msg += f"Creating DataFrame with {len(expected_features)} columns...\n"
# Create empty DataFrame with correct columns filled with zeros
X = pd.DataFrame(0.0, index=df_mapped.index, columns=expected_features)
# Fill columns that exist in df_mapped
for col in expected_features:
if col in df_mapped.columns:
try:
# Convert to numeric, handling any data type
col_data = pd.to_numeric(df_mapped[col], errors='coerce')
# Ensure we have a 1D Series, flatten if needed
if hasattr(col_data, 'values'):
col_values = col_data.values
if len(col_values.shape) > 1:
info_msg += f"Warning: Column '{col}' has shape {col_values.shape}, flattening...\n"
col_values = col_values.flatten()[:len(X)] # Take only first N values
X[col] = col_values
else:
X[col] = col_data
except Exception as e:
info_msg += f"Warning: Could not convert column '{col}': {str(e)}\n"
X[col] = 0.0
# Ensure all columns are numeric
X = X.apply(pd.to_numeric, errors='coerce')
# Calculate statistics
available_cols = [col for col in expected_features if col in df_mapped.columns]
missing_cols = [col for col in expected_features if col not in df_mapped.columns]
if missing_cols:
info_msg += f"Warning: {len(missing_cols)} columns missing (filled with zeros)\n"
info_msg += f"DEBUG: X.shape = {X.shape}, expected: ({len(df_mapped)}, {len(expected_features)})\n"
# Fill NaN with column means, then with 0 for any remaining NaN
X = X.fillna(X.mean())
X = X.fillna(0)
# Ensure no infinite values
X = X.replace([float('inf'), float('-inf')], 0)
info_msg += f"DEBUG: After fillna X.shape = {X.shape}\n"
info_msg += f"Data processing: {X.shape}\n"
info_msg += f" Filled: {len(available_cols)} columns, Added zeros: {len(missing_cols)}\n"
info_msg += f"Data prepared for model\n\n"
# Make predictions
pred_start = time.time()
# Use numpy array instead of DataFrame to bypass feature name checks
X_values = X.values # Convert to numpy array
info_msg += f"DEBUG: X_values.shape = {X_values.shape}\n\n"
predictions = model.predict(X_values)
predictions_proba = model.predict_proba(X_values)
pred_time = time.time() - pred_start
info_msg += f"Predictions completed: {len(predictions)} objects in {pred_time:.2f} sec\n"
# Create result dataframe
df_result = df_uploaded.copy()
# Get unique classes from model
classes = model.classes_
info_msg += f" Found classes: {list(classes)}\n\n"
# Add predictions (text labels)
df_result['prediction'] = predictions
# Add probabilities for each class
for i, class_name in enumerate(classes):
df_result[f'confidence_{class_name.replace(" ", "_").lower()}'] = predictions_proba[:, i]
# Add mapping information as separate columns
if mapping:
for src_col, tgt_col in mapping.items():
if src_col in df_uploaded.columns and tgt_col in df_mapped.columns:
df_result[f'mapped_as_{tgt_col}'] = df_uploaded[src_col]
# Создаем упрощенный вывод с только важными колонками для отображения
# Выбираем колонки предсказаний
display_columns = ['prediction']
for class_name in classes:
col_name = f'confidence_{class_name.replace(" ", "_").lower()}'
if col_name in df_result.columns:
display_columns.append(col_name)
# Add mapped columns (if any)
mapped_cols = [col for col in df_result.columns if col.startswith('mapped_as_')]
display_columns.extend(mapped_cols[:10]) # Show first 10 mapped columns
# If no mapped columns, add first 5 original columns
if not mapped_cols and len(df_uploaded.columns) > 0:
original_cols = [col for col in df_uploaded.columns[:5] if col in df_result.columns]
display_columns.extend(original_cols)
# Create dataframe for display
df_display = df_result[display_columns].copy()
total_time = time.time() - start_time
# Create statistics by class
from collections import Counter
pred_counts = Counter(predictions)
stats_lines = ["**Prediction Statistics:**\n"]
stats_lines.append(f"* Total objects: {len(predictions)}\n")
for class_name in classes:
count = pred_counts.get(class_name, 0)
pct = count / len(predictions) * 100 if len(predictions) > 0 else 0
stats_lines.append(f"* {class_name}: {count} ({pct:.1f}%)\n")
stats_lines.append(f"\n**Processing time:** {total_time:.2f} seconds\n")
stats_lines.append(f"\n**Columns in result:**\n")
stats_lines.append(f"* All original columns from uploaded file (with original names)\n")
stats_lines.append(f"* `prediction`: Predicted class ({', '.join(classes)})\n")
for class_name in classes:
col_name = f'confidence_{class_name.replace(" ", "_").lower()}'
stats_lines.append(f"* `{col_name}`: Probability of class {class_name}\n")
stats_lines.append(f"* Columns `mapped_as_*`: Duplicate mapped columns for reference\n")
stats_lines.append(f"\n**Total columns in result:** {len(df_result.columns)}\n")
stats = "".join(stats_lines) + f"""
**Mapping completed:** {len(mapping)} columns renamed for model
**Full dataset saved:** All {len(df_result.columns)} columns available for download
"""
# Save full result to temporary file for download
output_file = "predictions_result.csv"
df_result.to_csv(output_file, index=False)
# Return simplified output for display and path to full file
return df_display, info_msg, stats, output_file
except Exception as e:
error_msg = f"Error processing file:\n{str(e)}"
import traceback
error_msg += f"\n\n{traceback.format_exc()}"
return None, error_msg, None, None
# Create Gradio interface
with gr.Blocks(title="Exoplanet Detector", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Exoplanet Detector
Upload a CSV file with data about exoplanet candidates (KOI - Kepler Objects of Interest).
**How it works:**
1. Upload your dataset with any column structure
2. Llama automatically maps your columns to training columns
3. Model makes predictions: exoplanet or false positive
**Model:** Random Forest Classifier
**Mapping:** Llama 3.3 70B via Together AI
**Note:** Processing large datasets (>1000 rows) may take several minutes.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV file",
file_types=[".csv"],
type="filepath"
)
submit_btn = gr.Button("Run Prediction", variant="primary", size="lg")
with gr.Column(scale=2):
mapping_info = gr.Textbox(
label="Column Mapping Information",
lines=15,
max_lines=20
)
with gr.Row():
stats_output = gr.Markdown(label="Statistics")
with gr.Row():
results_output = gr.Dataframe(
label="Prediction Results (main columns)",
wrap=True,
interactive=False
)
with gr.Row():
download_output = gr.File(
label="Download full result with all columns",
interactive=False
)
# Event handler
submit_btn.click(
fn=predict_exoplanets,
inputs=[file_input],
outputs=[results_output, mapping_info, stats_output, download_output]
)
gr.Markdown("""
---
### Tips:
- Make sure your CSV file contains data about stellar systems and their characteristics
- The more columns match the training dataset, the more accurate the predictions will be
- Model trained on NASA Exoplanet Archive data (Kepler Mission)
### Example training dataset columns:
`koi_period`, `koi_depth`, `koi_prad`, `koi_teq`, `koi_insol`, `koi_steff`, `koi_slogg`, `koi_srad`, `ra`, `dec`, `koi_kepmag` etc.
""")
# Launch application
if __name__ == "__main__":
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)
|