File size: 17,908 Bytes
7382f7a 3fdaf15 7382f7a 3fdaf15 7382f7a 3fdaf15 7382f7a 3fdaf15 7382f7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
"""
Модуль для маппинга колонок загруженного датасета на колонки тренировочного датасета
используя Llama через Together API
"""
import pandas as pd
import os
import re
from together import Together
def convert_coordinates_to_degrees(value):
"""
Конвертирует координаты из формата HMS/DMS в градусы
Примеры: '07h29m25.85s' -> 112.357708 degrees
'45d30m15.5s' -> 45.504306 degrees
"""
if pd.isna(value) or isinstance(value, (int, float)):
return value
value_str = str(value).strip()
# Формат HMS (часы:минуты:секунды) для RA
hms_match = re.match(r'(\d+)h(\d+)m([\d.]+)s?', value_str)
if hms_match:
hours = float(hms_match.group(1))
minutes = float(hms_match.group(2))
seconds = float(hms_match.group(3))
return hours * 15 + minutes * 0.25 + seconds * 0.00416667 # 1h = 15°, 1m = 0.25°, 1s = 0.00416667°
# Формат DMS (градусы:минуты:секунды) для DEC
dms_match = re.match(r'([+-]?)(\d+)d(\d+)m([\d.]+)s?', value_str)
if dms_match:
sign = -1 if dms_match.group(1) == '-' else 1
degrees = float(dms_match.group(2))
minutes = float(dms_match.group(3))
seconds = float(dms_match.group(4))
return sign * (degrees + minutes / 60 + seconds / 3600)
# Если не распознали формат, возвращаем NaN
return float('nan')
class ColumnMapper:
def __init__(self, api_key: str):
"""
Initialize column mapper
Args:
api_key: API key for Together AI
"""
self.client = Together(api_key=api_key)
# Built-in synonym dictionary (fallback) - significantly expanded
self.known_synonyms = {
# Orbital period
'pl_orbper': 'koi_period',
'orbital_period': 'koi_period',
'period': 'koi_period',
'pl_orbpererr1': 'koi_period_err1',
'pl_orbpererr2': 'koi_period_err2',
'pl_orbpererr': 'koi_period_err1',
# Transit time/epoch
'pl_tranmid': 'koi_time0bk',
'transit_time': 'koi_time0bk',
'time0': 'koi_time0bk',
'epoch': 'koi_time0bk',
'pl_tranmiderr1': 'koi_time0bk_err1',
'pl_tranmiderr2': 'koi_time0bk_err2',
# Transit duration
'pl_trandur': 'koi_duration',
'pl_trandurh': 'koi_duration',
'transit_duration': 'koi_duration',
'duration': 'koi_duration',
'pl_trandurerr1': 'koi_duration_err1',
'pl_trandurerr2': 'koi_duration_err2',
# Transit depth
'pl_trandep': 'koi_depth',
'transit_depth': 'koi_depth',
'depth': 'koi_depth',
'pl_trandeperr1': 'koi_depth_err1',
'pl_trandeperr2': 'koi_depth_err2',
# Planet radius
'pl_rade': 'koi_prad',
'pl_radj': 'koi_prad',
'planet_radius': 'koi_prad',
'radius': 'koi_prad',
'pl_radeerr1': 'koi_prad_err1',
'pl_radeerr2': 'koi_prad_err2',
'pl_radjerr1': 'koi_prad_err1',
'pl_radjerr2': 'koi_prad_err2',
# Insolation flux
'pl_insol': 'koi_insol',
'insolation': 'koi_insol',
'insol': 'koi_insol',
'pl_insolerr1': 'koi_insol_err1',
'pl_insolerr2': 'koi_insol_err2',
# Equilibrium temperature
'pl_eqt': 'koi_teq',
'equilibrium_temp': 'koi_teq',
'teq': 'koi_teq',
'pl_eqterr1': 'koi_teq_err1',
'pl_eqterr2': 'koi_teq_err2',
# Stellar effective temperature
'st_teff': 'koi_steff',
'stellar_teff': 'koi_steff',
'star_temp': 'koi_steff',
'teff': 'koi_steff',
'st_tefferr1': 'koi_steff_err1',
'st_tefferr2': 'koi_steff_err2',
# Stellar surface gravity
'st_logg': 'koi_slogg',
'stellar_logg': 'koi_slogg',
'surface_gravity': 'koi_slogg',
'logg': 'koi_slogg',
'st_loggerr1': 'koi_slogg_err1',
'st_loggerr2': 'koi_slogg_err2',
# Stellar radius
'st_rad': 'koi_srad',
'stellar_radius': 'koi_srad',
'star_radius': 'koi_srad',
'st_raderr1': 'koi_srad_err1',
'st_raderr2': 'koi_srad_err2',
# Stellar mass
'st_mass': 'koi_smass',
'stellar_mass': 'koi_smass',
'st_masserr1': 'koi_smass_err1',
'st_masserr2': 'koi_smass_err2',
# Kepler magnitude
'sy_kepmag': 'koi_kepmag',
'kepmag': 'koi_kepmag',
'kep_mag': 'koi_kepmag',
'sy_kepmaglim': 'koi_kepmag',
# Coordinates
'ra': 'ra',
'ra_deg': 'ra',
'rastr': 'ra',
'dec': 'dec',
'dec_deg': 'dec',
'decstr': 'dec',
# Model SNR
'koi_model_snr': 'koi_model_snr',
'snr': 'koi_model_snr',
# Impact parameter
'pl_imppar': 'koi_impact',
'impact': 'koi_impact',
'impact_parameter': 'koi_impact',
# Additional mappings for error columns
'koi_period_err': 'koi_period_err1',
'koi_time0bk_err': 'koi_time0bk_err1',
'koi_duration_err': 'koi_duration_err1',
'koi_depth_err': 'koi_depth_err1',
'koi_prad_err': 'koi_prad_err1',
'koi_teq_err': 'koi_teq_err1',
'koi_insol_err': 'koi_insol_err1',
'koi_steff_err': 'koi_steff_err1',
'koi_slogg_err': 'koi_slogg_err1',
'koi_srad_err': 'koi_srad_err1',
'koi_smass_err': 'koi_smass_err1',
}
def get_column_mapping(self, source_columns: list, target_columns: list) -> dict:
"""
Получает маппинг между колонками источника и целевыми колонками
используя LLM
Args:
source_columns: Список колонок загруженного датасета
target_columns: Список колонок тренировочного датасета
Returns:
Словарь маппинга {source_column: target_column}
"""
# Словарь известных синонимов для точного маппинга
known_mappings = """
Common column name mappings (NASA Exoplanet Archive):
- pl_orbper, orbital_period, period → koi_period (Orbital Period in days)
- pl_tranmid, transit_time, time0 → koi_time0bk (Transit Epoch in BJD)
- pl_trandur, pl_trandurh, transit_duration → koi_duration (Transit Duration in hours)
- pl_trandep, transit_depth, depth → koi_depth (Transit Depth in ppm)
- pl_rade, planet_radius, radius → koi_prad (Planetary Radius in Earth radii)
- pl_insol, insolation, insol → koi_insol (Insolation Flux in Earth flux)
- pl_eqt, equilibrium_temp, teq → koi_teq (Equilibrium Temperature in K)
- st_teff, stellar_teff, star_temp → koi_steff (Stellar Effective Temperature in K)
- st_logg, stellar_logg, surface_gravity → koi_slogg (Stellar Surface Gravity in log10(cm/s^2))
- st_rad, stellar_radius, star_radius → koi_srad (Stellar Radius in Solar radii)
- st_mass, stellar_mass, star_mass → koi_smass (Stellar Mass in Solar masses)
- ra, ra_deg → ra (Right Ascension in degrees)
- dec, dec_deg → dec (Declination in degrees)
- pl_bmassj, planet_mass → koi_prad (use radius if mass not available)
- sy_dist, distance → koi_steff (stellar distance - related to stellar properties)
"""
prompt = f"""You are an expert in NASA Exoplanet Archive data mapping. Map column names from a source dataset to Kepler/KOI target dataset columns.
{known_mappings}
Source columns:
{source_columns}
Target columns:
{target_columns}
CRITICAL INSTRUCTIONS:
1. Use the known mappings above as your PRIMARY reference
2. Match columns based on physical meaning (e.g., "pl_orbper" = orbital period = "koi_period")
3. Common prefixes: "pl_" = planet property, "st_" = stellar property, "koi_" = KOI property
4. If exact match exists in known mappings, USE IT
5. Only map columns with clear semantic similarity
6. Return ONLY a Python dictionary: {{"source": "target", ...}}
7. NO markdown, NO explanations, NO code blocks - just the dictionary
Example: {{"pl_orbper": "koi_period", "st_teff": "koi_steff", "ra": "ra"}}
Mapping:"""
response = self.client.chat.completions.create(
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0.1,
max_tokens=2000
)
mapping_str = response.choices[0].message.content.strip()
# Очистка ответа от возможных markdown блоков
if "```" in mapping_str:
mapping_str = mapping_str.split("```")[1]
if mapping_str.startswith("python"):
mapping_str = mapping_str[6:]
mapping_str = mapping_str.strip()
# Преобразование строки в словарь
try:
mapping = eval(mapping_str)
if not isinstance(mapping, dict):
raise ValueError("Response is not a dictionary")
except Exception as e:
print(f"Error parsing mapping: {e}")
print(f"Raw response: {mapping_str}")
# Возвращаем пустой маппинг в случае ошибки
mapping = {}
# Supplement mapping with known synonyms (fallback)
# Check source columns that were not mapped by Llama
unmapped_sources = [col for col in source_columns if col not in mapping]
for src_col in unmapped_sources:
src_lower = src_col.lower()
# Check exact match with known synonyms
if src_lower in self.known_synonyms:
target = self.known_synonyms[src_lower]
if target in target_columns:
mapping[src_col] = target
continue
# Check for partial matches (more sophisticated)
# Remove common prefixes/suffixes for comparison
src_clean = src_lower.replace('pl_', '').replace('st_', '').replace('sy_', '').replace('koi_', '')
for known_src, known_tgt in self.known_synonyms.items():
known_clean = known_src.replace('pl_', '').replace('st_', '').replace('sy_', '').replace('koi_', '')
# Check if core part matches
if src_clean == known_clean or known_clean in src_clean or src_clean in known_clean:
if known_tgt in target_columns:
mapping[src_col] = known_tgt
break
# If still not mapped, try fuzzy matching on target columns
if src_col not in mapping:
for tgt_col in target_columns:
tgt_clean = tgt_col.replace('koi_', '')
# Check if source contains target name
if tgt_clean in src_lower or src_clean == tgt_clean:
mapping[src_col] = tgt_col
break
return mapping
def apply_mapping(self, df: pd.DataFrame, mapping: dict) -> pd.DataFrame:
"""
Применяет маппинг к датафрейму
Args:
df: Исходный датафрейм
mapping: Словарь маппинга
Returns:
Датафрейм с переименованными колонками
"""
# Переименовываем только те колонки, которые есть в маппинге
df_mapped = df.copy()
# Проверяем какие колонки из маппинга действительно есть в датафрейме
valid_mapping = {k: v for k, v in mapping.items() if k in df.columns}
if valid_mapping:
df_mapped = df_mapped.rename(columns=valid_mapping)
# Ensure all columns are properly flattened and converted to numeric where possible
for col in df_mapped.columns:
try:
# Get the column as a Series
col_data = df_mapped[col]
# Check if it's actually a Series (not a DataFrame)
if not isinstance(col_data, pd.Series):
continue
# Check if column has object dtype or might contain complex data
if col_data.dtype == 'object':
try:
# Try to convert to numeric
df_mapped[col] = pd.to_numeric(col_data, errors='coerce')
except:
pass
# Ensure column is 1D
if hasattr(col_data, 'values'):
col_values = col_data.values
if len(col_values.shape) > 1:
# Flatten multi-dimensional arrays
df_mapped[col] = col_values.flatten()[:len(df_mapped)]
except Exception as e:
# Skip problematic columns
continue
return df_mapped
def map_dataset(self, uploaded_df: pd.DataFrame, target_columns: list) -> tuple:
"""
Полный процесс маппинга датасета
Args:
uploaded_df: Загруженный датафрейм
target_columns: Список колонок тренировочного датасета
Returns:
Кортеж (mapped_dataframe, mapping_dict, info_message)
"""
# Копируем датафрейм чтобы не изменять оригинал
df_work = uploaded_df.copy()
# Clean up column names - remove extra spaces, special characters
df_work.columns = df_work.columns.str.strip()
# Handle any multi-dimensional columns before mapping
for col in df_work.columns:
if df_work[col].dtype == 'object':
# Check if column contains complex structures
first_val = df_work[col].dropna().iloc[0] if len(df_work[col].dropna()) > 0 else None
if isinstance(first_val, (list, tuple)):
# Flatten lists/tuples - take first element
df_work[col] = df_work[col].apply(
lambda x: x[0] if isinstance(x, (list, tuple)) and len(x) > 0 else (x if not isinstance(x, (list, tuple)) else None)
)
elif isinstance(first_val, str):
# Try to convert string representations of numbers
try:
df_work[col] = pd.to_numeric(df_work[col], errors='ignore')
except:
pass
# Конвертируем координаты в градусы если они в текстовом формате
coord_columns = [col for col in df_work.columns if any(
keyword in col.lower() for keyword in ['ra', 'dec', 'coord', 'right_ascension', 'declination', 'rastr', 'decstr']
)]
for col in coord_columns:
# Check first non-empty value
first_val = df_work[col].dropna().iloc[0] if len(df_work[col].dropna()) > 0 else None
if first_val and isinstance(first_val, str) and ('h' in first_val or 'd' in first_val):
# Convert entire column
df_work[col] = df_work[col].apply(convert_coordinates_to_degrees)
source_columns = df_work.columns.tolist()
# Get mapping via LLM
mapping = self.get_column_mapping(source_columns, target_columns)
# Apply mapping
mapped_df = self.apply_mapping(df_work, mapping)
# Create info message
if mapping:
info_msg = f"Successfully mapped {len(mapping)} columns:\n"
for src, tgt in mapping.items():
info_msg += f" * {src} -> {tgt}\n"
else:
info_msg = "Warning: No mapping performed - no matches found between columns\n"
info_msg += f"Source columns: {', '.join(source_columns[:5])}...\n"
# Check which target columns are missing
missing_cols = set(target_columns) - set(mapped_df.columns)
if missing_cols:
info_msg += f"\nWarning: Missing {len(missing_cols)} target columns (will be filled with zeros)\n"
return mapped_df, mapping, info_msg
def load_training_columns(csv_path: str) -> list:
"""
Load column names from training dataset
Args:
csv_path: Path to training dataset CSV file
Returns:
List of column names
"""
df = pd.read_csv(csv_path, comment='#', nrows=1)
return df.columns.tolist()
|