baiganinn's picture
Initial commit with LFS for model file
7382f7a
raw
history blame
10.7 kB
"""
Gradio UI для предсказания экзопланет
"""
import gradio as gr
import pandas as pd
import joblib
import os
import time
from mapping import ColumnMapper, load_training_columns
from dotenv import load_dotenv
# Загружаем переменные окружения из .env файла
load_dotenv()
# Константы
TRAINING_CSV_PATH = "cumulative_2025.10.03_08.34.41.csv"
MODEL_PATH = "exoplanet_detector.joblib"
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY", "")
# Загружаем модель и колонки тренировочного датасета
model = joblib.load(MODEL_PATH)
training_columns = load_training_columns(TRAINING_CSV_PATH)
# Инициализируем маппер
mapper = ColumnMapper(api_key=TOGETHER_API_KEY)
def predict_exoplanets(uploaded_file):
"""
Process uploaded file and return predictions
Args:
uploaded_file: Uploaded CSV file
Returns:
Tuple (results, mapping info, statistics)
"""
start_time = time.time()
try:
# Load dataset
if uploaded_file is None:
return None, "Error: Please upload a CSV file", None
# Read uploaded file
df_uploaded = pd.read_csv(uploaded_file.name, comment='#')
info_msg = f"Loaded rows: {len(df_uploaded)}\n"
info_msg += f"Columns in uploaded dataset: {len(df_uploaded.columns)}\n\n"
# Apply column mapping
mapping_start = time.time()
info_msg += "Performing column mapping via Llama...\n\n"
df_mapped, mapping, mapping_info = mapper.map_dataset(df_uploaded, training_columns)
mapping_time = time.time() - mapping_start
info_msg += mapping_info + "\n"
info_msg += f"Mapping time: {mapping_time:.2f} sec\n\n"
# Get features expected by the model
try:
expected_features = list(model.feature_names_in_)
info_msg += f"Model expects {len(expected_features)} features\n\n"
except AttributeError:
# If feature_names_in_ is not available, use all columns except targets
target_cols = ['koi_disposition', 'koi_pdisposition']
expected_features = [col for col in training_columns if col not in target_cols]
info_msg += f"Using {len(expected_features)} features from training dataset\n\n"
# Prepare X with correct columns
info_msg += f"Creating DataFrame with {len(expected_features)} columns...\n"
# Create empty DataFrame with correct columns
X = pd.DataFrame(index=df_mapped.index, columns=expected_features)
# Fill columns that exist in df_mapped
for col in expected_features:
if col in df_mapped.columns:
X[col] = df_mapped[col].values
else:
X[col] = 0.0 # Fill missing columns with zeros
# Convert all columns to numeric format
X = X.apply(pd.to_numeric, errors='coerce')
# Calculate statistics
available_cols = [col for col in expected_features if col in df_mapped.columns]
missing_cols = [col for col in expected_features if col not in df_mapped.columns]
if missing_cols:
info_msg += f"Warning: {len(missing_cols)} columns missing (filled with zeros)\n"
info_msg += f"DEBUG: X.shape = {X.shape}, expected: ({len(df_mapped)}, {len(expected_features)})\n"
# Fill NaN with mean values
X = X.fillna(X.mean().fillna(0))
info_msg += f"DEBUG: After fillna X.shape = {X.shape}\n"
info_msg += f"Data processing: {X.shape}\n"
info_msg += f" Filled: {len(available_cols)} columns, Added zeros: {len(missing_cols)}\n"
info_msg += f"Data prepared for model\n\n"
# Make predictions
pred_start = time.time()
# Use numpy array instead of DataFrame to bypass feature name checks
X_values = X.values # Convert to numpy array
info_msg += f"DEBUG: X_values.shape = {X_values.shape}\n\n"
predictions = model.predict(X_values)
predictions_proba = model.predict_proba(X_values)
pred_time = time.time() - pred_start
info_msg += f"Predictions completed: {len(predictions)} objects in {pred_time:.2f} sec\n"
# Create result dataframe
df_result = df_uploaded.copy()
# Get unique classes from model
classes = model.classes_
info_msg += f" Found classes: {list(classes)}\n\n"
# Add predictions (text labels)
df_result['prediction'] = predictions
# Add probabilities for each class
for i, class_name in enumerate(classes):
df_result[f'confidence_{class_name.replace(" ", "_").lower()}'] = predictions_proba[:, i]
# Add mapping information as separate columns
if mapping:
for src_col, tgt_col in mapping.items():
if src_col in df_uploaded.columns and tgt_col in df_mapped.columns:
df_result[f'mapped_as_{tgt_col}'] = df_uploaded[src_col]
# Создаем упрощенный вывод с только важными колонками для отображения
# Выбираем колонки предсказаний
display_columns = ['prediction']
for class_name in classes:
col_name = f'confidence_{class_name.replace(" ", "_").lower()}'
if col_name in df_result.columns:
display_columns.append(col_name)
# Add mapped columns (if any)
mapped_cols = [col for col in df_result.columns if col.startswith('mapped_as_')]
display_columns.extend(mapped_cols[:10]) # Show first 10 mapped columns
# If no mapped columns, add first 5 original columns
if not mapped_cols and len(df_uploaded.columns) > 0:
original_cols = [col for col in df_uploaded.columns[:5] if col in df_result.columns]
display_columns.extend(original_cols)
# Create dataframe for display
df_display = df_result[display_columns].copy()
total_time = time.time() - start_time
# Create statistics by class
from collections import Counter
pred_counts = Counter(predictions)
stats_lines = ["**Prediction Statistics:**\n"]
stats_lines.append(f"* Total objects: {len(predictions)}\n")
for class_name in classes:
count = pred_counts.get(class_name, 0)
pct = count / len(predictions) * 100 if len(predictions) > 0 else 0
stats_lines.append(f"* {class_name}: {count} ({pct:.1f}%)\n")
stats_lines.append(f"\n**Processing time:** {total_time:.2f} seconds\n")
stats_lines.append(f"\n**Columns in result:**\n")
stats_lines.append(f"* All original columns from uploaded file (with original names)\n")
stats_lines.append(f"* `prediction`: Predicted class ({', '.join(classes)})\n")
for class_name in classes:
col_name = f'confidence_{class_name.replace(" ", "_").lower()}'
stats_lines.append(f"* `{col_name}`: Probability of class {class_name}\n")
stats_lines.append(f"* Columns `mapped_as_*`: Duplicate mapped columns for reference\n")
stats_lines.append(f"\n**Total columns in result:** {len(df_result.columns)}\n")
stats = "".join(stats_lines) + f"""
**Mapping completed:** {len(mapping)} columns renamed for model
**Full dataset saved:** All {len(df_result.columns)} columns available for download
"""
# Save full result to temporary file for download
output_file = "predictions_result.csv"
df_result.to_csv(output_file, index=False)
# Return simplified output for display and path to full file
return df_display, info_msg, stats, output_file
except Exception as e:
error_msg = f"Error processing file:\n{str(e)}"
import traceback
error_msg += f"\n\n{traceback.format_exc()}"
return None, error_msg, None, None
# Create Gradio interface
with gr.Blocks(title="Exoplanet Detector", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Exoplanet Detector
Upload a CSV file with data about exoplanet candidates (KOI - Kepler Objects of Interest).
**How it works:**
1. Upload your dataset with any column structure
2. Llama automatically maps your columns to training columns
3. Model makes predictions: exoplanet or false positive
**Model:** Random Forest Classifier
**Mapping:** Llama 3.3 70B via Together AI
**Note:** Processing large datasets (>1000 rows) may take several minutes.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV file",
file_types=[".csv"],
type="filepath"
)
submit_btn = gr.Button("Run Prediction", variant="primary", size="lg")
with gr.Column(scale=2):
mapping_info = gr.Textbox(
label="Column Mapping Information",
lines=15,
max_lines=20
)
with gr.Row():
stats_output = gr.Markdown(label="Statistics")
with gr.Row():
results_output = gr.Dataframe(
label="Prediction Results (main columns)",
wrap=True,
interactive=False
)
with gr.Row():
download_output = gr.File(
label="Download full result with all columns",
interactive=False
)
# Event handler
submit_btn.click(
fn=predict_exoplanets,
inputs=[file_input],
outputs=[results_output, mapping_info, stats_output, download_output]
)
gr.Markdown("""
---
### Tips:
- Make sure your CSV file contains data about stellar systems and their characteristics
- The more columns match the training dataset, the more accurate the predictions will be
- Model trained on NASA Exoplanet Archive data (Kepler Mission)
### Example training dataset columns:
`koi_period`, `koi_depth`, `koi_prad`, `koi_teq`, `koi_insol`, `koi_steff`, `koi_slogg`, `koi_srad`, `ra`, `dec`, `koi_kepmag` etc.
""")
# Launch application
if __name__ == "__main__":
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)