Spaces:
Runtime error
Runtime error
File size: 2,707 Bytes
af3b285 3249a2d af3b285 3249a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
title: NEBULA-X-DEMO
emoji: π§
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.43.1
app_file: app.py
pinned: false
license: mit
---
# π NEBULA-X: Enhanced Unified Holographic Neural Network
**Optimized for Open LLM Leaderboard v2 Evaluation**
NEBULA-X is a revolutionary AI architecture that combines holographic memory, quantum computing, and optical neural networks to create the world's first production-ready photonic neural network system.
## π Leaderboard Benchmarks
This model is optimized for evaluation on:
- **IFEval**: Instruction following capability
- **BBH**: Complex reasoning tasks
- **MATH**: Advanced mathematical problem solving
- **GPQA**: Graduate-level question answering
- **MuSR**: Multi-step reasoning
- **MMLU-PRO**: Professional multitask understanding
## π¬ Model Architecture
### Core Technologies
- **Holographic Memory**: 3D interference pattern storage
- **Quantum Processing**: 4 qubits per neuron for enhanced computation
- **Optical Raytracing**: GPU-accelerated light-based processing
- **Advanced Attention**: Multi-dimensional attention mechanisms
### Technical Specifications
- **Parameters**: ~85M (768 hidden size, 12 layers)
- **Context Length**: 2048 tokens
- **Precision**: float16 optimized
- **Vocabulary**: 50,257 tokens (GPT-2 compatible)
## π Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X")
tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X")
# Generate text
inputs = tokenizer("The future of AI is", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, do_sample=True)
text = tokenizer.decode(outputs[0])
```
## π¬ Research Innovation
NEBULA-X introduces groundbreaking concepts:
1. **Holographic Neural Networks**: Information stored as interference patterns
2. **Quantum-Enhanced Processing**: Superposition and entanglement for parallel computation
3. **Optical Raytracing**: Physical light simulation for neural computation
4. **Multi-dimensional Attention**: Beyond traditional transformer attention
## π Benchmark Performance
Optimized for fair evaluation on standardized benchmarks. Model designed to showcase:
- Mathematical reasoning capabilities
- Complex instruction following
- Multi-step logical reasoning
- Professional domain knowledge
## π¨βπ» Author
**Francisco Angulo de Lafuente (Agnuxo)**
- Research Focus: Holographic Computing, Quantum AI, Optical Neural Networks
- NVIDIA LlamaIndex Developer Contest 2024 Winner
## π License
Apache 2.0 - Open source and commercially usable.
---
*Ready for automated evaluation on the Open LLM Leaderboard v2* |