Spaces:
Runtime error
Runtime error
| from transformers import pipeline | |
| from PIL import Image | |
| import gradio as gr | |
| # Initialize TrOCR pipeline for specialized OCR | |
| ocr_pipeline = pipeline("image-to-text", model="microsoft/trocr-base-printed") | |
| def extract_text_from_image(image): | |
| if image is None: | |
| return "No image provided. Please upload an image file." | |
| try: | |
| # Convert Gradio image to PIL Image | |
| pil_image = Image.fromarray(image) | |
| # Extract text from image using TrOCR | |
| result = ocr_pipeline(pil_image) | |
| # Return the extracted text | |
| return result[0]['generated_text'] | |
| except Exception as e: | |
| return f"Error during text extraction: {str(e)}" | |
| # Gradio interface | |
| with gr.Blocks(title="Image Text Extractor") as demo: | |
| gr.Markdown("# π· Image Text Extractor") | |
| gr.Markdown("Extract text from images using Microsoft's TrOCR model") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image( | |
| type="numpy", | |
| label="Upload Image" | |
| ) | |
| extract_btn = gr.Button("Extract Text", variant="primary") | |
| with gr.Column(): | |
| text_output = gr.Textbox( | |
| lines=10, | |
| label="Extracted Text", | |
| interactive=False | |
| ) | |
| extract_btn.click( | |
| extract_text_from_image, | |
| inputs=image_input, | |
| outputs=text_output | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["example1.jpg"], | |
| ["example2.png"] | |
| ], | |
| inputs=[image_input], | |
| ) | |
| gr.Markdown("### About This Model") | |
| gr.Markdown("- **Model**: [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed)") | |
| gr.Markdown("- **Task**: Optical Character Recognition (OCR)") | |
| gr.Markdown("- **Architecture**: Transformer-based OCR (TrOCR)") | |
| gr.Markdown("- **Capabilities**: Specialized for printed text extraction") | |
| gr.Markdown("- **Note**: First processing may take 15-25 seconds (model loading)") | |
| gr.Markdown("- **Supported Formats**: JPG, PNG, JPEG") | |
| if __name__ == "__main__": | |
| demo.launch() |