AiCoderv2's picture
Create app.py
56d2fb4 verified
from transformers import pipeline
from PIL import Image
import gradio as gr
# Initialize TrOCR pipeline for specialized OCR
ocr_pipeline = pipeline("image-to-text", model="microsoft/trocr-base-printed")
def extract_text_from_image(image):
if image is None:
return "No image provided. Please upload an image file."
try:
# Convert Gradio image to PIL Image
pil_image = Image.fromarray(image)
# Extract text from image using TrOCR
result = ocr_pipeline(pil_image)
# Return the extracted text
return result[0]['generated_text']
except Exception as e:
return f"Error during text extraction: {str(e)}"
# Gradio interface
with gr.Blocks(title="Image Text Extractor") as demo:
gr.Markdown("# πŸ“· Image Text Extractor")
gr.Markdown("Extract text from images using Microsoft's TrOCR model")
with gr.Row():
with gr.Column():
image_input = gr.Image(
type="numpy",
label="Upload Image"
)
extract_btn = gr.Button("Extract Text", variant="primary")
with gr.Column():
text_output = gr.Textbox(
lines=10,
label="Extracted Text",
interactive=False
)
extract_btn.click(
extract_text_from_image,
inputs=image_input,
outputs=text_output
)
gr.Examples(
examples=[
["example1.jpg"],
["example2.png"]
],
inputs=[image_input],
)
gr.Markdown("### About This Model")
gr.Markdown("- **Model**: [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed)")
gr.Markdown("- **Task**: Optical Character Recognition (OCR)")
gr.Markdown("- **Architecture**: Transformer-based OCR (TrOCR)")
gr.Markdown("- **Capabilities**: Specialized for printed text extraction")
gr.Markdown("- **Note**: First processing may take 15-25 seconds (model loading)")
gr.Markdown("- **Supported Formats**: JPG, PNG, JPEG")
if __name__ == "__main__":
demo.launch()