Spaces:
Runtime error
Runtime error
File size: 9,070 Bytes
6a6c658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
#!/usr/bin/env python3
"""
AI Coding Model Server
FastAPI server that hosts the 5B parameter coding model
"""
import torch
import spaces
import uvicorn
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional
import logging
import os
import asyncio
import threading
from contextlib import asynccontextmanager
# Import model components
from models import CodeModel
from utils import format_code_response, validate_code_syntax
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global model instance
code_model = None
model_loading = False
class ChatMessage(BaseModel):
"""Chat message model."""
message: str = Field(..., description="User's message")
history: List[Dict[str, str]] = Field(default_factory=list, description="Chat history")
language: str = Field(default="python", description="Target programming language")
temperature: float = Field(default=0.7, ge=0.1, le=1.0, description="Generation temperature")
class ChatResponse(BaseModel):
"""Chat response model."""
choices: List[Dict[str, Dict[str, str]]] = Field(..., description="Generated responses")
history: List[Dict[str, str]] = Field(..., description="Updated chat history")
usage: Optional[Dict[str, int]] = Field(None, description="Token usage information")
class HealthResponse(BaseModel):
"""Health check response."""
status: str
model_loaded: bool
model_name: str
device: str
memory_usage: Optional[Dict[str, Any]] = None
class ModelInfoResponse(BaseModel):
"""Model information response."""
model_name: str
parameter_count: str
max_length: int
device: str
is_loaded: bool
vocab_size: int
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan management."""
# Startup
logger.info("Starting up AI Coding Model Server...")
await load_model()
yield
# Shutdown
logger.info("Shutting down server...")
async def load_model():
"""Load the model in background."""
global code_model, model_loading
if code_model is not None or model_loading:
return
model_loading = True
logger.info("Loading coding model...")
try:
# Load model in thread to avoid blocking
loop = asyncio.get_event_loop()
code_model = await loop.run_in_executor(None, CodeModel)
if code_model.is_loaded:
logger.info(f"β
Model loaded successfully: {code_model.model_name}")
else:
logger.error("β Failed to load model")
except Exception as e:
logger.error(f"β Error loading model: {e}")
code_model = None
finally:
model_loading = False
def create_app() -> FastAPI:
"""Create and configure the FastAPI application."""
# Create FastAPI app with lifespan management
app = FastAPI(
title="AI Coding Model Server",
description="FastAPI server hosting a 5B parameter coding model",
version="1.0.0",
lifespan=lifespan
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/", response_model=Dict[str, str])
async def root():
"""Root endpoint."""
return {
"message": "AI Coding Model Server",
"version": "1.0.0",
"status": "running" if code_model and code_model.is_loaded else "loading"
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint."""
if model_loading:
return HealthResponse(
status="loading",
model_loaded=False,
model_name="Loading...",
device="unknown"
)
if not code_model or not code_model.is_loaded:
raise HTTPException(status_code=503, detail="Model not loaded")
# Get memory usage if available
memory_info = None
if torch.cuda.is_available():
memory_info = {
"allocated": torch.cuda.memory_allocated() / 1024**3, # GB
"cached": torch.cuda.memory_reserved() / 1024**3, # GB
"total": torch.cuda.get_device_properties(0).total_memory / 1024**3
}
return HealthResponse(
status="healthy",
model_loaded=True,
model_name=code_model.model_name,
device=code_model.device,
memory_usage=memory_info
)
@app.get("/model/info", response_model=ModelInfoResponse)
async def model_info():
"""Get detailed model information."""
if not code_model:
raise HTTPException(status_code=503, detail="Model not loaded")
info = code_model.get_model_info()
return ModelInfoResponse(**info)
@app.post("/api/chat", response_model=ChatResponse)
async def chat(request: ChatMessage):
"""Main chat endpoint."""
if model_loading:
raise HTTPException(status_code=503, detail="Model is still loading")
if not code_model or not code_model.is_loaded:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
# Generate response using the model
messages = request.history.copy()
messages.append({"role": "user", "content": request.message})
response_text = code_model.generate(
messages=messages,
temperature=request.temperature,
max_new_tokens=2048,
language=request.language
)
# Format the response
formatted_response = format_code_response(response_text)
# Update chat history
new_history = request.history.copy()
new_history.append({"role": "user", "content": request.message})
new_history.append({"role": "assistant", "content": formatted_response})
return ChatResponse(
choices=[{"message": {"content": formatted_response}}],
history=new_history
)
except Exception as e:
logger.error(f"Chat error: {e}")
raise HTTPException(status_code=500, detail=f"Generation error: {str(e)}")
@app.post("/api/validate-code")
async def validate_code(request: Dict[str, Any]):
"""Validate code syntax."""
code = request.get("code", "")
language = request.get("language", "python")
if not code:
raise HTTPException(status_code=400, detail="No code provided")
validation_result = validate_code_syntax(code, language)
return validation_result
@app.get("/api/languages")
async def get_supported_languages():
"""Get list of supported programming languages."""
return {
"languages": [
"python", "javascript", "java", "cpp", "c", "go", "rust",
"typescript", "php", "ruby", "swift", "kotlin", "sql",
"html", "css", "bash", "powershell"
]
}
return app
def run_server(host: str = "0.0.0.0", port: int = 8000, reload: bool = False):
"""Run the FastAPI server."""
app = create_app()
console_info = f"""
π AI Coding Model Server Starting...
π Server Info:
β’ Host: {host}
β’ Port: {port}
β’ Model: Loading...
β’ Device: {'CUDA' if torch.cuda.is_available() else 'CPU'}
π Endpoints:
β’ Health: http://{host}:{port}/health
β’ Model Info: http://{host}:{port}/model/info
β’ Chat: http://{host}:{port}/api/chat
β’ API Docs: http://{host}:{port}/docs
π‘ Usage:
β’ Terminal client: python terminal_chatbot.py
β’ API calls: POST to /api/chat with chat messages
β’ Check status: GET /health
β‘ Server is ready! Press Ctrl+C to stop.
"""
print(console_info)
# Run server
uvicorn.run(
"model_server:create_app",
host=host,
port=port,
reload=reload,
log_level="info",
access_log=True
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="AI Coding Model Server")
parser.add_argument("--host", default="0.0.0.0", help="Server host")
parser.add_argument("--port", type=int, default=8000, help="Server port")
parser.add_argument("--reload", action="store_true", help="Auto-reload on changes")
args = parser.parse_args()
run_server(
host=args.host,
port=args.port,
reload=args.reload
) |