Spaces:
Runtime error
Runtime error
File size: 8,681 Bytes
6a6c658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from typing import List, Dict, Any, Optional
import logging
import asyncio
import threading
logger = logging.getLogger(__name__)
class CodeModel:
"""5B Parameter coding model wrapper with optimized inference."""
def __init__(self):
self.model_name = "bigcode/starcoder2-7b" # 7B model (closest to 5B with excellent coding)
self.parameter_count = "7B"
self.max_length = 16384
self.tokenizer = None
self.model = None
self.pipeline = None
self.is_loaded = False
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self._lock = threading.Lock()
@spaces.GPU(duration=1200) # Extended duration for model loading
def load_model(self):
"""Load the model (called via spaces decorator for optimization)."""
try:
logger.info(f"Loading {self.model_name} model...")
# Load tokenizer and model
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
padding_side="left"
)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model with optimization
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True,
use_cache=True
)
# Set model to evaluation mode
self.model.eval()
# Create pipeline for easier inference
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=0 if self.device == "cuda" else -1,
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1,
max_new_tokens=2048,
pad_token_id=self.tokenizer.eos_token_id
)
self.is_loaded = True
logger.info(f"β
{self.model_name} loaded successfully on {self.device}")
except Exception as e:
logger.error(f"β Error loading model: {e}")
self._fallback_model()
def _fallback_model(self):
"""Fallback to a smaller model if the main model fails to load."""
try:
logger.info("Trying fallback model: microsoft/DialoGPT-medium")
self.model_name = "microsoft/DialoGPT-medium"
self.parameter_count = "345M"
self.max_length = 1024
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None
)
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=0 if self.device == "cuda" else -1,
max_new_tokens=512,
pad_token_id=self.tokenizer.eos_token_id
)
self.is_loaded = True
logger.info(f"β
Fallback model loaded successfully")
except Exception as e:
logger.error(f"β Fallback model also failed: {e}")
self.is_loaded = False
def generate(
self,
messages: List[Dict[str, str]],
temperature: float = 0.7,
max_new_tokens: int = 2048,
language: str = "python"
) -> str:
"""Generate response from the model."""
if not self.is_loaded:
return "I'm sorry, the model is not loaded yet. Please try again in a moment."
try:
with self._lock: # Ensure thread-safe access
# Convert chat format to text
if messages:
# Format as conversation
conversation = ""
for msg in messages:
role = msg["role"]
content = msg["content"]
if role == "system":
conversation += f"System: {content}\n\n"
elif role == "user":
conversation += f"Human: {content}\n"
elif role == "assistant":
conversation += f"Assistant: {content}\n"
# Add specific coding instructions
if "write" in conversation.lower() or "code" in conversation.lower():
conversation += f"\n\nPlease provide clean, well-commented {language} code with proper syntax and best practices."
conversation += "\nAssistant:"
# Generate response
with torch.no_grad():
if self.pipeline:
# Use pipeline for generation
outputs = self.pipeline(
conversation,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1,
max_new_tokens=max_new_tokens,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
return_full_text=False,
clean_up_tokenization_spaces=True
)
if outputs and len(outputs) > 0:
response = outputs[0]["generated_text"].strip()
return response
# Fallback to direct model generation
inputs = self.tokenizer.encode(conversation, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
inputs,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1,
max_new_tokens=max_new_tokens,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
attention_mask=torch.ones_like(inputs)
)
# Decode response
response = self.tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
return response.strip()
except Exception as e:
logger.error(f"Generation error: {e}")
return f"I apologize, but I encountered an error while generating the response: {str(e)}"
def get_model_info(self) -> Dict[str, Any]:
"""Get information about the loaded model."""
return {
"model_name": self.model_name,
"parameter_count": self.parameter_count,
"max_length": self.max_length,
"device": self.device,
"is_loaded": self.is_loaded,
"vocab_size": len(self.tokenizer) if self.tokenizer else 0
}
# Global model instance for the server
_global_model = None
def get_model():
"""Get or create the global model instance."""
global _global_model
if _global_model is None:
_global_model = CodeModel()
# Load model asynchronously
threading.Thread(target=_global_model.load_model, daemon=True).start()
return _global_model
def CodeModel():
"""Factory function for creating CodeModel instances."""
return CodeModel() |