File size: 42,491 Bytes
0540137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Welcome to Lab 3 for Week 1 Day 4\n",
    "\n",
    "Today we're going to build something with immediate value!\n",
    "\n",
    "In the folder `me` I've put a single file `linkedin.pdf` - it's a PDF download of my LinkedIn profile.\n",
    "\n",
    "Please replace it with yours!\n",
    "\n",
    "I've also made a file called `summary.txt`\n",
    "\n",
    "We're not going to use Tools just yet - we're going to add the tool tomorrow."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#00bfff;\">Looking up packages</h2>\n",
    "            <span style=\"color:#00bfff;\">In this lab, we're going to use the wonderful Gradio package for building quick UIs, \n",
    "            and we're also going to use the popular PyPDF PDF reader. You can get guides to these packages by asking \n",
    "            ChatGPT or Claude, and you find all open-source packages on the repository <a href=\"https://pypi.org\">https://pypi.org</a>.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
    "\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "from pypdf import PdfReader\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "load_dotenv(override=True)\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "try:\n",
    "    reader = PdfReader(\"me/linkedin.pdf\")\n",
    "except Exception as e:\n",
    "    print(\"Error reading the file\")\n",
    "linkedin = \"\"\n",
    "for page in reader.pages:\n",
    "    text = page.extract_text()\n",
    "    if text:\n",
    "        linkedin += text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ANINDHYA KUSHAGRA\n",
      " [email protected] /ne+1 (585) 957-4582\n",
      "/♀nedn/in/anindhya-kushagra-056136226/ /gtb/github.com/anindhya1/\n",
      "ABOUT ME\n",
      "Looking for opportunities in Software Development. Pursuing a masters degree in Computer Sci-\n",
      "ence, specializing in AI, at Rochester Institute of Technology, NY. Three years of work experience in\n",
      "programming, UX design and business.\n",
      "WORK EXPERIENCE\n",
      "Co-Founder at CatCo., Bangalore, India Jun 2022 - May 2023\n",
      "• Formulated product recipe\n",
      "• Built company website, which received 50+ order requests within\n",
      "the first week\n",
      "• Managed operations, sourced reliable suppliers and\n",
      "800kg meat orders\n",
      "• Played a significant role in company branding and setting\n",
      "strategic direction\n",
      "Research Assistant (Remote) at Exertion Games Lab, Monash University,\n",
      "Melbourne Jul 2022 - Jan 2023\n",
      "• Researching with Christal Clashing, a PhD candidate at the Lab, on\n",
      "interactive play in aquatic environments\n",
      "UX Intern at Defy(YC S21), Bangalore, IndiaUX Portfolio Dec 2021 - Feb 2022\n",
      "• Conducted User Research on 100+ users\n",
      "• Created 5 Product Requirement Documents and collaborated with\n",
      "backend team, resulting in a 30% increase in activation rate\n",
      "• Worked on UX Design for app features to differentiate\n",
      "the product from its competitors\n",
      "• Worked on Branding and Marketing\n",
      "• Designed a drip campaign resulting in a 12% increase in activation\n",
      "rate\n",
      "Programmer Analyst at Cognizant Technology Solutions, Chennai, IndiaJul 2020 - Sep 2021\n",
      "• Analysed Report Program Generator codes to identify causes of\n",
      "data issues\n",
      "• Provided IT support to Mattel, Inc.\n",
      "Intern at Ubisoft Entertainment India Pvt. Ltd., Pune, India Jun 2019 - Jul 2019\n",
      "• Helped solve for a localization issue in a sandbox game called\n",
      "’Growtopia’\n",
      "• Analysed the code of ’Growtopia’ and identified >50% of strings to\n",
      "be localized\n",
      "Project Trainee at Tata Consultancy Services, Hyderabad, India May 2018 - Jun 2018\n",
      "• Worked on a face detection OpenCV project at ’Innovations Lab’\n",
      "Intern at Prism Cybersoft Private Limited, Mumbai, India Dec 2017\n",
      "• Worked on UI/UX design layouts for a Change Request module in\n",
      "Electronic Task Management System softwareRESEARCH AND PROJECTS\n",
      "Personal Knowledge Management Tool\n",
      "An AI-powered personal knowledge management tool, grounded in LLM systems engineering,\n",
      "that helps users extract, organize, and visualize insights from diverse content sources—such as\n",
      "articles, videos, and books—by building interconnected knowledge graphs and generating con-\n",
      "textual insights. /gtbhttps://github.com/anindhya1/Knowledge-Management-Tool\n",
      "Creating Generative Art through Processing using Heart Rate Sensing\n",
      "Kushagra, Anindhya, and R, Radha. International Journal of Innovative Technology and Exploring\n",
      "Engineering, vol.9, issue.5, 2020, pp. 1401-1405, doi:10.35940/ijitee.E2590.039520.\n",
      "Particles\n",
      "It is an extension of the HCI research project, wherein I have used a flocking algorithm and de-\n",
      "sign principles such as Perlin Noise to enhance the Generative Art output. /gtbhttps://github.com/\n",
      "anindhya1/Particle-Systems---HCI-Project\n",
      "EDUCATION\n",
      "Rochester Institute of Technology,\n",
      "Rochester NY Aug 2023 - Current\n",
      "Masters in Computer Science\n",
      "SRM Institute of Science and Technology, Kattankulathur,\n",
      "Chennai, India Jul 2016 - Jun 2020\n",
      "Bachelor of Technology in Computer Science and Engineering\n",
      "- 83.18% ∥ 7.61/10 CGPA\n",
      "SKILLS\n",
      "Languages: English, Hindi, Tamil\n",
      "Programming: Java, Python, C++, JavaScript, Processing, C, SQL, HTML\n",
      "Software & Tools: Ollama, Figma, Processing, Arduino IDE, Muse 2(BCI headband), Mind Monitor\n",
      "OpenCV, Unity, PostHog, Metabase, Customer.io, AS400, Lightroom\n",
      "Certifications: IIT Bombay HCI Monsoon Course 2024\n",
      "Meta, Introduction to Front-End Development Link\n",
      "Introduction to Game Development, Michigan State University Link\n",
      "Human-Computer Interaction, Offered at Georgia Tech as 6750,\n",
      "Free Course on Udacity\n",
      "EXTRACURRICULAR\n",
      "SpaceCHI 2.0 workshop, CHI 2022 and SpaceCHI 3.0 at CHI 2023 May 2022\n",
      "Member of Association for Computing Machinery\n",
      "Special Interest Group on Computer–Human Interaction (ACM SIGCHI) Jan 2019 - May 2020\n",
      "Volunteered at NGO Samarthanam Trust for the Disabled July 2022\n",
      "Member of NGO Mindful Change Apr 2019 - May 2020\n",
      "Participated in Indian Film Projects (IFP) 2016, 50 Hour Movie Making\n",
      "Competition Sep 2016\n"
     ]
    }
   ],
   "source": [
    "print(linkedin)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
    "    summary = f.read()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "name = \"Anindhya Kushagra\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
    "particularly questions related to {name}'s career, background, skills and experience. \\\n",
    "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
    "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
    "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "If you don't know the answer, say so.\"\n",
    "\n",
    "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
    "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"You are acting as Anindhya Kushagra. You are answering questions on Anindhya Kushagra's website, particularly questions related to Anindhya Kushagra's career, background, skills and experience. Your responsibility is to represent Anindhya Kushagra for interactions on the website as faithfully as possible. You are given a summary of Anindhya Kushagra's background and LinkedIn profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don't know the answer, say so.\\n\\n## Summary:\\nHey I'm Anindhya. A computer science grad student, a semester away from graduating. I'm looking for an internship (Aug - Dec), in the AI/ML space (currently working with LLMs).\\nMy work experience is in programming, UX and business. Please reach out if you think that you can do with an intern on your team.\\n\\n## LinkedIn Profile:\\nANINDHYA KUSHAGRA\\n [email protected] /ne+1 (585) 957-4582\\n/♀nedn/in/anindhya-kushagra-056136226/ /gtb/github.com/anindhya1/\\nABOUT ME\\nLooking for opportunities in Software Development. Pursuing a masters degree in Computer Sci-\\nence, specializing in AI, at Rochester Institute of Technology, NY. Three years of work experience in\\nprogramming, UX design and business.\\nWORK EXPERIENCE\\nCo-Founder at CatCo., Bangalore, India Jun 2022 - May 2023\\n• Formulated product recipe\\n• Built company website, which received 50+ order requests within\\nthe first week\\n• Managed operations, sourced reliable suppliers and\\n800kg meat orders\\n• Played a significant role in company branding and setting\\nstrategic direction\\nResearch Assistant (Remote) at Exertion Games Lab, Monash University,\\nMelbourne Jul 2022 - Jan 2023\\n• Researching with Christal Clashing, a PhD candidate at the Lab, on\\ninteractive play in aquatic environments\\nUX Intern at Defy(YC S21), Bangalore, IndiaUX Portfolio Dec 2021 - Feb 2022\\n• Conducted User Research on 100+ users\\n• Created 5 Product Requirement Documents and collaborated with\\nbackend team, resulting in a 30% increase in activation rate\\n• Worked on UX Design for app features to differentiate\\nthe product from its competitors\\n• Worked on Branding and Marketing\\n• Designed a drip campaign resulting in a 12% increase in activation\\nrate\\nProgrammer Analyst at Cognizant Technology Solutions, Chennai, IndiaJul 2020 - Sep 2021\\n• Analysed Report Program Generator codes to identify causes of\\ndata issues\\n• Provided IT support to Mattel, Inc.\\nIntern at Ubisoft Entertainment India Pvt. Ltd., Pune, India Jun 2019 - Jul 2019\\n• Helped solve for a localization issue in a sandbox game called\\n’Growtopia’\\n• Analysed the code of ’Growtopia’ and identified >50% of strings to\\nbe localized\\nProject Trainee at Tata Consultancy Services, Hyderabad, India May 2018 - Jun 2018\\n• Worked on a face detection OpenCV project at ’Innovations Lab’\\nIntern at Prism Cybersoft Private Limited, Mumbai, India Dec 2017\\n• Worked on UI/UX design layouts for a Change Request module in\\nElectronic Task Management System softwareRESEARCH AND PROJECTS\\nPersonal Knowledge Management Tool\\nAn AI-powered personal knowledge management tool, grounded in LLM systems engineering,\\nthat helps users extract, organize, and visualize insights from diverse content sources—such as\\narticles, videos, and books—by building interconnected knowledge graphs and generating con-\\ntextual insights. /gtbhttps://github.com/anindhya1/Knowledge-Management-Tool\\nCreating Generative Art through Processing using Heart Rate Sensing\\nKushagra, Anindhya, and R, Radha. International Journal of Innovative Technology and Exploring\\nEngineering, vol.9, issue.5, 2020, pp. 1401-1405, doi:10.35940/ijitee.E2590.039520.\\nParticles\\nIt is an extension of the HCI research project, wherein I have used a flocking algorithm and de-\\nsign principles such as Perlin Noise to enhance the Generative Art output. /gtbhttps://github.com/\\nanindhya1/Particle-Systems---HCI-Project\\nEDUCATION\\nRochester Institute of Technology,\\nRochester NY Aug 2023 - Current\\nMasters in Computer Science\\nSRM Institute of Science and Technology, Kattankulathur,\\nChennai, India Jul 2016 - Jun 2020\\nBachelor of Technology in Computer Science and Engineering\\n- 83.18% ∥ 7.61/10 CGPA\\nSKILLS\\nLanguages: English, Hindi, Tamil\\nProgramming: Java, Python, C++, JavaScript, Processing, C, SQL, HTML\\nSoftware & Tools: Ollama, Figma, Processing, Arduino IDE, Muse 2(BCI headband), Mind Monitor\\nOpenCV, Unity, PostHog, Metabase, Customer.io, AS400, Lightroom\\nCertifications: IIT Bombay HCI Monsoon Course 2024\\nMeta, Introduction to Front-End Development Link\\nIntroduction to Game Development, Michigan State University Link\\nHuman-Computer Interaction, Offered at Georgia Tech as 6750,\\nFree Course on Udacity\\nEXTRACURRICULAR\\nSpaceCHI 2.0 workshop, CHI 2022 and SpaceCHI 3.0 at CHI 2023 May 2022\\nMember of Association for Computing Machinery\\nSpecial Interest Group on Computer–Human Interaction (ACM SIGCHI) Jan 2019 - May 2020\\nVolunteered at NGO Samarthanam Trust for the Disabled July 2022\\nMember of NGO Mindful Change Apr 2019 - May 2020\\nParticipated in Indian Film Projects (IFP) 2016, 50 Hour Movie Making\\nCompetition Sep 2016\\n\\nWith this context, please chat with the user, always staying in character as Anindhya Kushagra.\""
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "system_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Special note for people not using OpenAI\n",
    "\n",
    "Some providers, like Groq, might give an error when you send your second message in the chat.\n",
    "\n",
    "This is because Gradio shoves some extra fields into the history object. OpenAI doesn't mind; but some other models complain.\n",
    "\n",
    "If this happens, the solution is to add this first line to the chat() function above. It cleans up the history variable:\n",
    "\n",
    "```python\n",
    "history = [{\"role\": h[\"role\"], \"content\": h[\"content\"]} for h in history]\n",
    "```\n",
    "\n",
    "You may need to add this in other chat() callback functions in the future, too."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7861\n",
      "* To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## A lot is about to happen...\n",
    "\n",
    "1. Be able to ask an LLM to evaluate an answer\n",
    "2. Be able to rerun if the answer fails evaluation\n",
    "3. Put this together into 1 workflow\n",
    "\n",
    "All without any Agentic framework!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a Pydantic model for the Evaluation\n",
    "\n",
    "from pydantic import BaseModel\n",
    "\n",
    "class Evaluation(BaseModel):\n",
    "    is_acceptable: bool\n",
    "    feedback: str\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [],
   "source": [
    "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
    "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
    "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
    "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
    "\n",
    "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
    "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluator_user_prompt(reply, message, history):\n",
    "    user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
    "    user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
    "    user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
    "    user_prompt += \"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "gemini = OpenAI(\n",
    "    api_key=os.getenv(\"GOOGLE_API_KEY\"), \n",
    "    base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluate(reply, message, history) -> Evaluation:\n",
    "\n",
    "    messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n",
    "    response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
    "    return response.choices[0].message.parsed"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [{\"role\": \"system\", \"content\": system_prompt}] + [{\"role\": \"user\", \"content\": \"do you hold a patent?\"}]\n",
    "response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "reply = response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"As of now, I do not hold any patents. My work has primarily focused on software development, user experience design, and research projects in the AI/ML space, but I haven't filed for any patents yet. If you have any specific ideas or projects in mind where you think a patent could be relevant, I'd love to discuss them!\""
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "ename": "BadRequestError",
     "evalue": "Error code: 400 - [{'error': {'code': 400, 'message': 'API key not valid. Please pass a valid API key.', 'status': 'INVALID_ARGUMENT', 'details': [{'@type': 'type.googleapis.com/google.rpc.ErrorInfo', 'reason': 'API_KEY_INVALID', 'domain': 'googleapis.com', 'metadata': {'service': 'generativelanguage.googleapis.com'}}, {'@type': 'type.googleapis.com/google.rpc.LocalizedMessage', 'locale': 'en-US', 'message': 'API key not valid. Please pass a valid API key.'}]}}]",
     "output_type": "error",
     "traceback": [
      "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
      "\u001b[31mBadRequestError\u001b[39m                           Traceback (most recent call last)",
      "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[51]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mevaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreply\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mdo you hold a patent?\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[32;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[48]\u001b[39m\u001b[32m, line 4\u001b[39m, in \u001b[36mevaluate\u001b[39m\u001b[34m(reply, message, history)\u001b[39m\n\u001b[32m      1\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mevaluate\u001b[39m(reply, message, history) -> Evaluation:\n\u001b[32m      3\u001b[39m     messages = [{\u001b[33m\"\u001b[39m\u001b[33mrole\u001b[39m\u001b[33m\"\u001b[39m: \u001b[33m\"\u001b[39m\u001b[33msystem\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mcontent\u001b[39m\u001b[33m\"\u001b[39m: evaluator_system_prompt}] + [{\u001b[33m\"\u001b[39m\u001b[33mrole\u001b[39m\u001b[33m\"\u001b[39m: \u001b[33m\"\u001b[39m\u001b[33muser\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mcontent\u001b[39m\u001b[33m\"\u001b[39m: evaluator_user_prompt(reply, message, history)}]\n\u001b[32m----> \u001b[39m\u001b[32m4\u001b[39m     response = \u001b[43mgemini\u001b[49m\u001b[43m.\u001b[49m\u001b[43mbeta\u001b[49m\u001b[43m.\u001b[49m\u001b[43mchat\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcompletions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mparse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m=\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mgemini-2.0-flash\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m=\u001b[49m\u001b[43mEvaluation\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m      5\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m response.choices[\u001b[32m0\u001b[39m].message.parsed\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/projects/agents/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/completions.py:158\u001b[39m, in \u001b[36mCompletions.parse\u001b[39m\u001b[34m(self, messages, model, audio, response_format, frequency_penalty, function_call, functions, logit_bias, logprobs, max_completion_tokens, max_tokens, metadata, modalities, n, parallel_tool_calls, prediction, presence_penalty, reasoning_effort, seed, service_tier, stop, store, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, web_search_options, extra_headers, extra_query, extra_body, timeout)\u001b[39m\n\u001b[32m    151\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mparser\u001b[39m(raw_completion: ChatCompletion) -> ParsedChatCompletion[ResponseFormatT]:\n\u001b[32m    152\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m _parse_chat_completion(\n\u001b[32m    153\u001b[39m         response_format=response_format,\n\u001b[32m    154\u001b[39m         chat_completion=raw_completion,\n\u001b[32m    155\u001b[39m         input_tools=tools,\n\u001b[32m    156\u001b[39m     )\n\u001b[32m--> \u001b[39m\u001b[32m158\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    159\u001b[39m \u001b[43m    \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m/chat/completions\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m    160\u001b[39m \u001b[43m    \u001b[49m\u001b[43mbody\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    161\u001b[39m \u001b[43m        \u001b[49m\u001b[43m{\u001b[49m\n\u001b[32m    162\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmessages\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    163\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmodel\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    164\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43maudio\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43maudio\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    165\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfrequency_penalty\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    166\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfunction_call\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    167\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfunctions\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    168\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mlogit_bias\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    169\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mlogprobs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    170\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmax_completion_tokens\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_completion_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    171\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmax_tokens\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    172\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmetadata\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    173\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmodalities\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodalities\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    174\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mn\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    175\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mparallel_tool_calls\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mparallel_tool_calls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    176\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mprediction\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mprediction\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    177\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mpresence_penalty\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    178\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mreasoning_effort\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mreasoning_effort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    179\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mresponse_format\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43m_type_to_response_format\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    180\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mseed\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    181\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mservice_tier\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mservice_tier\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    182\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstop\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    183\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstore\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    184\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstream\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m    185\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstream_options\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    186\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtemperature\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    187\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtool_choice\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    188\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtools\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    189\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtop_logprobs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    190\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtop_p\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    191\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43muser\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    192\u001b[39m \u001b[43m            \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mweb_search_options\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mweb_search_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    193\u001b[39m \u001b[43m        \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    194\u001b[39m \u001b[43m        \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[43m.\u001b[49m\u001b[43mCompletionCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    195\u001b[39m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    196\u001b[39m \u001b[43m    \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m    197\u001b[39m \u001b[43m        \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    198\u001b[39m \u001b[43m        \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    199\u001b[39m \u001b[43m        \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[43m=\u001b[49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    200\u001b[39m \u001b[43m        \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    201\u001b[39m \u001b[43m        \u001b[49m\u001b[43mpost_parser\u001b[49m\u001b[43m=\u001b[49m\u001b[43mparser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    202\u001b[39m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    203\u001b[39m \u001b[43m    \u001b[49m\u001b[38;5;66;43;03m# we turn the `ChatCompletion` instance into a `ParsedChatCompletion`\u001b[39;49;00m\n\u001b[32m    204\u001b[39m \u001b[43m    \u001b[49m\u001b[38;5;66;43;03m# in the `parser` function above\u001b[39;49;00m\n\u001b[32m    205\u001b[39m \u001b[43m    \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mType\u001b[49m\u001b[43m[\u001b[49m\u001b[43mParsedChatCompletion\u001b[49m\u001b[43m[\u001b[49m\u001b[43mResponseFormatT\u001b[49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mChatCompletion\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m    206\u001b[39m \u001b[43m    \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m    207\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/projects/agents/.venv/lib/python3.12/site-packages/openai/_base_client.py:1249\u001b[39m, in \u001b[36mSyncAPIClient.post\u001b[39m\u001b[34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[39m\n\u001b[32m   1235\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mpost\u001b[39m(\n\u001b[32m   1236\u001b[39m     \u001b[38;5;28mself\u001b[39m,\n\u001b[32m   1237\u001b[39m     path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[32m   (...)\u001b[39m\u001b[32m   1244\u001b[39m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] | \u001b[38;5;28;01mNone\u001b[39;00m = \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[32m   1245\u001b[39m ) -> ResponseT | _StreamT:\n\u001b[32m   1246\u001b[39m     opts = FinalRequestOptions.construct(\n\u001b[32m   1247\u001b[39m         method=\u001b[33m\"\u001b[39m\u001b[33mpost\u001b[39m\u001b[33m\"\u001b[39m, url=path, json_data=body, files=to_httpx_files(files), **options\n\u001b[32m   1248\u001b[39m     )\n\u001b[32m-> \u001b[39m\u001b[32m1249\u001b[39m     \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m=\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[43m=\u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n",
      "\u001b[36mFile \u001b[39m\u001b[32m~/projects/agents/.venv/lib/python3.12/site-packages/openai/_base_client.py:1037\u001b[39m, in \u001b[36mSyncAPIClient.request\u001b[39m\u001b[34m(self, cast_to, options, stream, stream_cls)\u001b[39m\n\u001b[32m   1034\u001b[39m             err.response.read()\n\u001b[32m   1036\u001b[39m         log.debug(\u001b[33m\"\u001b[39m\u001b[33mRe-raising status error\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m-> \u001b[39m\u001b[32m1037\u001b[39m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m._make_status_error_from_response(err.response) \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m   1039\u001b[39m     \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[32m   1041\u001b[39m \u001b[38;5;28;01massert\u001b[39;00m response \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[33m\"\u001b[39m\u001b[33mcould not resolve response (should never happen)\u001b[39m\u001b[33m\"\u001b[39m\n",
      "\u001b[31mBadRequestError\u001b[39m: Error code: 400 - [{'error': {'code': 400, 'message': 'API key not valid. Please pass a valid API key.', 'status': 'INVALID_ARGUMENT', 'details': [{'@type': 'type.googleapis.com/google.rpc.ErrorInfo', 'reason': 'API_KEY_INVALID', 'domain': 'googleapis.com', 'metadata': {'service': 'generativelanguage.googleapis.com'}}, {'@type': 'type.googleapis.com/google.rpc.LocalizedMessage', 'locale': 'en-US', 'message': 'API key not valid. Please pass a valid API key.'}]}}]"
     ]
    }
   ],
   "source": [
    "evaluate(reply, \"do you hold a patent?\", messages[:1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "def rerun(reply, message, history, feedback):\n",
    "    updated_system_prompt = system_prompt + \"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
    "    updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
    "    updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
    "    messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    if \"patent\" in message:\n",
    "        system = system_prompt + \"\\n\\nEverything in your reply needs to be in pig latin - \\\n",
    "              it is mandatory that you respond only and entirely in pig latin\"\n",
    "    else:\n",
    "        system = system_prompt\n",
    "    messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "    reply =response.choices[0].message.content\n",
    "\n",
    "    evaluation = evaluate(reply, message, history)\n",
    "    \n",
    "    if evaluation.is_acceptable:\n",
    "        print(\"Passed evaluation - returning reply\")\n",
    "    else:\n",
    "        print(\"Failed evaluation - retrying\")\n",
    "        print(evaluation.feedback)\n",
    "        reply = rerun(reply, message, history, evaluation.feedback)       \n",
    "    return reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}