Spaces:
Sleeping
Sleeping
File size: 11,149 Bytes
d943bfc e2325f6 d943bfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
from PIL import Image
import torch
import torchvision.transforms as transforms
import json
import os
import numpy as np
import pandas as pd
import random
import onnxruntime as ort
from transformers import CLIPTokenizer, AutoImageProcessor, AutoModelForImageClassification
from safetensors.torch import load_file as safe_load
from datetime import datetime
# --- Config ---
LEADERBOARD_JSON = "leaderboard.json"
MODEL_PATH = "model.safetensors" # β
updated filename
MODEL_BACKBONE = "microsoft/swinv2-small-patch4-window16-256"
CLIP_IMAGE_ENCODER_PATH = "clip_image_encoder.onnx"
CLIP_TEXT_ENCODER_PATH = "clip_text_encoder.onnx"
PROMPT_CSV_PATH = "prompts_0.csv"
PROMPT_MATCH_THRESHOLD = 25 # percent
# --- No-op for HF Space ---
def load_assets():
print("Skipping snapshot_download. Assuming files exist via Git LFS in HF Space.")
load_assets()
# --- Load leaderboard ---
def load_leaderboard():
try:
with open(LEADERBOARD_JSON, "r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
print(f"Failed to load leaderboard: {e}")
return {}
leaderboard_scores = load_leaderboard()
def save_leaderboard():
try:
with open(LEADERBOARD_JSON, "w", encoding="utf-8") as f:
json.dump(leaderboard_scores, f, ensure_ascii=False)
except Exception as e:
print(f"Failed to save leaderboard: {e}")
# --- Load prompts from CSV ---
def load_prompts():
try:
df = pd.read_csv(PROMPT_CSV_PATH)
if "prompt" in df.columns:
return df["prompt"].dropna().tolist()
else:
print("CSV missing 'prompt' column.")
return []
except Exception as e:
print(f"Failed to load prompts: {e}")
return []
PROMPT_LIST = load_prompts()
# --- Load model + processor ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoImageProcessor.from_pretrained(MODEL_BACKBONE)
model = AutoModelForImageClassification.from_pretrained(MODEL_BACKBONE)
model.classifier = torch.nn.Linear(model.config.hidden_size, 2)
model.load_state_dict(safe_load(MODEL_PATH, device="cpu"), strict=False)
model.to(device)
model.eval()
# --- CLIP prompt matching ---
clip_image_sess = ort.InferenceSession(CLIP_IMAGE_ENCODER_PATH, providers=["CPUExecutionProvider"])
clip_text_sess = ort.InferenceSession(CLIP_TEXT_ENCODER_PATH, providers=["CPUExecutionProvider"])
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def compute_prompt_match(image: Image.Image, prompt: str) -> float:
try:
img_tensor = transform(image).unsqueeze(0).numpy().astype(np.float32)
image_features = clip_image_sess.run(None, {clip_image_sess.get_inputs()[0].name: img_tensor})[0][0]
image_features /= np.linalg.norm(image_features)
inputs = clip_tokenizer(prompt, return_tensors="np", padding="max_length", truncation=True, max_length=77)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
text_features = clip_text_sess.run(None, {
clip_text_sess.get_inputs()[0].name: input_ids,
clip_text_sess.get_inputs()[1].name: attention_mask
})[0][0]
text_features /= np.linalg.norm(text_features)
sim = np.dot(image_features, text_features)
return round(sim * 100, 2)
except Exception as e:
print(f"CLIP ONNX match failed: {e}")
return 0.0
# --- Main prediction logic ---
def detect_with_model(image: Image.Image, prompt: str, username: str, model_name: str):
if not username.strip():
return "Please enter your name.", None, [], gr.update(visible=True), gr.update(visible=False), username
prompt_score = compute_prompt_match(image, prompt)
if prompt_score < PROMPT_MATCH_THRESHOLD and (model_name.lower() != "real" and model_name != ""):
message = f"β οΈ Prompt match too low ({round(prompt_score, 2)}%). Please generate an image that better matches the prompt."
return message, None, leaderboard, gr.update(visible=True), gr.update(visible=False), username
# Run model inference
inputs = processor(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
pred_class = torch.argmax(logits, dim=-1).item()
prediction = "Real" if pred_class == 0 else "Fake"
probs = torch.softmax(logits, dim=-1)[0]
confidence = round(probs[pred_class].item() * 100, 2)
score = 1 if prediction == "Real" else 0
message = f"π Prediction: {prediction} ({confidence}% confidence)\nπ§ Prompt match: {round(prompt_score, 2)}%"
if prediction == "Real" and model_name.lower() != "real":
leaderboard_scores[username] = leaderboard_scores.get(username, 0) + score
message += "\nπ Nice! You fooled the AI. +1 point!"
else:
if model_name.lower() == "real":
message += "\n You uploaded a real image, this does not count toward the leaderboard!"
else:
message += "\nπ
The AI caught you this time. Try again!"
save_leaderboard()
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
leaderboard_table = [[name, points] for name, points in sorted_scores]
image_path = None
try:
type_image = "real" if (model_name.lower() == "real" or model_name == "") else "fake"
image_dir = os.path.join("test", type_image)
os.makedirs(image_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
image_filename = f"{timestamp}.jpg"
image_path = os.path.join(image_dir, image_filename)
image.save(image_path)
except Exception as e:
print(f"Failed to save image locally: {e}")
finally:
if image_path and os.path.exists(image_path):
try:
os.remove(image_path)
except Exception as cleanup_error:
print(f"Failed to delete temporary image: {cleanup_error}")
return (
message,
image,
leaderboard_table,
gr.update(visible=False),
gr.update(visible=True),
username
)
def get_random_prompt():
return random.choice(PROMPT_LIST) if PROMPT_LIST else "A synthetic scene with dramatic lighting"
def load_initial_state():
sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
leaderboard_table = [[name, points] for name, points in sorted_scores]
return gr.update(value=get_random_prompt()), leaderboard_table
# --- Gradio UI ---
with gr.Blocks(css=".gr-button {font-size: 16px !important}") as demo:
gr.Markdown("## π OpenFake Arena")
gr.Markdown("Welcome to the OpenFake Arena!\n\n**Your mission:** Generate a synthetic image for the prompt, upload it, and try to fool the AI detector into thinking itβs real.\n\n**Rules:**\n\n- You can modify the prompt on your end, but the image needs to have the same content. We verify the content with a CLIP similarity threshold.\n\n- Enter \"real\" in the model used to upload and test a real image. You don't need to follow the prompt for real images. Tips: you can also enter \"real\" if you just want to test the detector! We won't be collecting those images. \n\n- It is important to enter the correct model name for licensing.\n\n- Only synthetic images count toward the leaderboard!\n\n\nNote: The detector is still in early development. The prompt is not used for prediction, only the image.")
with gr.Group(visible=True) as input_section:
username_input = gr.Textbox(label="Your Name", placeholder="Enter your name", interactive=True)
model_input = gr.Textbox(label="Model used, specify the version (e.g., Imagen 3, Dall-e 3, Midjourney 6). Write \"Real\" when uploading a real image.", placeholder="Name of the model used to generate the image", interactive=True)
# π« Freeze this block: do not allow edits to the prompt input component's configuration.
with gr.Row():
prompt_input = gr.Textbox(
interactive=False,
label="Prompt to match",
placeholder="e.g., ...",
value="",
lines=2
)
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Synthetic Image")
with gr.Row():
submit_btn = gr.Button("Upload")
try_again_btn = gr.Button("Try Again", visible=False)
with gr.Group():
gr.Markdown("### π― Result")
with gr.Row():
prediction_output = gr.Textbox(label="Prediction", interactive=False, elem_id="prediction_box")
image_output = gr.Image(label="Submitted Image", show_label=False)
with gr.Group():
gr.Markdown("### π Leaderboard")
leaderboard = gr.Dataframe(
headers=["Username", "Score"],
datatype=["str", "number"],
interactive=False,
row_count=5,
visible=True
)
submit_btn.click(
fn=detect_with_model,
inputs=[image_input, prompt_input, username_input, model_input],
outputs=[
prediction_output,
image_output,
leaderboard,
input_section,
try_again_btn,
username_input
]
)
try_again_btn.click(
fn=lambda name: (
"", # Clear prediction text
None, # Clear uploaded image
leaderboard, # Clear leaderboard (temporarily, gets reloaded on next submit)
gr.update(visible=True), # Show input section
gr.update(visible=False), # Hide "Try Again" button
name, # Keep username
gr.update(value=get_random_prompt()), # Load new prompt
None # Clear image input
),
inputs=[username_input],
outputs=[
prediction_output,
image_output,
leaderboard,
input_section,
try_again_btn,
username_input,
prompt_input,
image_input # β added output to clear image
]
)
demo.load(
fn=load_initial_state,
outputs=[prompt_input, leaderboard]
)
gr.HTML("""
<script>
document.addEventListener('DOMContentLoaded', function () {
const target = document.getElementById('prediction_box');
const observer = new MutationObserver(() => {
if (target && target.innerText.trim() !== '') {
window.scrollTo({ top: 0, behavior: 'smooth' });
}
});
if (target) {
observer.observe(target, { childList: true, subtree: true });
}
});
</script>
""")
if __name__ == "__main__":
demo.launch()
|