File size: 11,149 Bytes
d943bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2325f6
d943bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import gradio as gr
from PIL import Image
import torch
import torchvision.transforms as transforms
import json
import os
import numpy as np
import pandas as pd
import random
import onnxruntime as ort
from transformers import CLIPTokenizer, AutoImageProcessor, AutoModelForImageClassification
from safetensors.torch import load_file as safe_load
from datetime import datetime

# --- Config ---
LEADERBOARD_JSON = "leaderboard.json"
MODEL_PATH = "model.safetensors"  # βœ… updated filename
MODEL_BACKBONE = "microsoft/swinv2-small-patch4-window16-256"
CLIP_IMAGE_ENCODER_PATH = "clip_image_encoder.onnx"
CLIP_TEXT_ENCODER_PATH = "clip_text_encoder.onnx"
PROMPT_CSV_PATH = "prompts_0.csv"
PROMPT_MATCH_THRESHOLD = 25  # percent

# --- No-op for HF Space ---
def load_assets():
    print("Skipping snapshot_download. Assuming files exist via Git LFS in HF Space.")

load_assets()

# --- Load leaderboard ---
def load_leaderboard():
    try:
        with open(LEADERBOARD_JSON, "r", encoding="utf-8") as f:
            return json.load(f)
    except Exception as e:
        print(f"Failed to load leaderboard: {e}")
        return {}

leaderboard_scores = load_leaderboard()

def save_leaderboard():
    try:
        with open(LEADERBOARD_JSON, "w", encoding="utf-8") as f:
            json.dump(leaderboard_scores, f, ensure_ascii=False)
    except Exception as e:
        print(f"Failed to save leaderboard: {e}")

# --- Load prompts from CSV ---
def load_prompts():
    try:
        df = pd.read_csv(PROMPT_CSV_PATH)
        if "prompt" in df.columns:
            return df["prompt"].dropna().tolist()
        else:
            print("CSV missing 'prompt' column.")
            return []
    except Exception as e:
        print(f"Failed to load prompts: {e}")
        return []

PROMPT_LIST = load_prompts()

# --- Load model + processor ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

processor = AutoImageProcessor.from_pretrained(MODEL_BACKBONE)
model = AutoModelForImageClassification.from_pretrained(MODEL_BACKBONE)
model.classifier = torch.nn.Linear(model.config.hidden_size, 2)

model.load_state_dict(safe_load(MODEL_PATH, device="cpu"), strict=False)
model.to(device)
model.eval()

# --- CLIP prompt matching ---
clip_image_sess = ort.InferenceSession(CLIP_IMAGE_ENCODER_PATH, providers=["CPUExecutionProvider"])
clip_text_sess = ort.InferenceSession(CLIP_TEXT_ENCODER_PATH, providers=["CPUExecutionProvider"])
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")

transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

def compute_prompt_match(image: Image.Image, prompt: str) -> float:
    try:
        img_tensor = transform(image).unsqueeze(0).numpy().astype(np.float32)
        image_features = clip_image_sess.run(None, {clip_image_sess.get_inputs()[0].name: img_tensor})[0][0]
        image_features /= np.linalg.norm(image_features)

        inputs = clip_tokenizer(prompt, return_tensors="np", padding="max_length", truncation=True, max_length=77)
        input_ids = inputs["input_ids"]
        attention_mask = inputs["attention_mask"]
        text_features = clip_text_sess.run(None, {
            clip_text_sess.get_inputs()[0].name: input_ids,
            clip_text_sess.get_inputs()[1].name: attention_mask
        })[0][0]
        text_features /= np.linalg.norm(text_features)

        sim = np.dot(image_features, text_features)
        return round(sim * 100, 2)
    except Exception as e:
        print(f"CLIP ONNX match failed: {e}")
        return 0.0

# --- Main prediction logic ---
def detect_with_model(image: Image.Image, prompt: str, username: str, model_name: str):
    if not username.strip():
        return "Please enter your name.", None, [], gr.update(visible=True), gr.update(visible=False), username

    prompt_score = compute_prompt_match(image, prompt)
    if prompt_score < PROMPT_MATCH_THRESHOLD and (model_name.lower() != "real" and model_name != ""):
        message = f"⚠️ Prompt match too low ({round(prompt_score, 2)}%). Please generate an image that better matches the prompt."
        return message, None, leaderboard, gr.update(visible=True), gr.update(visible=False), username

    # Run model inference
    inputs = processor(image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        pred_class = torch.argmax(logits, dim=-1).item()
        prediction = "Real" if pred_class == 0 else "Fake"

        probs = torch.softmax(logits, dim=-1)[0]
        confidence = round(probs[pred_class].item() * 100, 2)

    score = 1 if prediction == "Real" else 0

    message = f"πŸ” Prediction: {prediction} ({confidence}% confidence)\n🧐 Prompt match: {round(prompt_score, 2)}%"
    if prediction == "Real" and model_name.lower() != "real":
        leaderboard_scores[username] = leaderboard_scores.get(username, 0) + score
        message += "\nπŸŽ‰ Nice! You fooled the AI. +1 point!"            
    else:
        if model_name.lower() == "real":
            message += "\n You uploaded a real image, this does not count toward the leaderboard!"
        else:
            message += "\nπŸ˜… The AI caught you this time. Try again!"

    save_leaderboard()

    sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
    leaderboard_table = [[name, points] for name, points in sorted_scores]

    image_path = None
    try:
        type_image = "real" if (model_name.lower() == "real" or model_name == "") else "fake"
        image_dir = os.path.join("test", type_image)
        os.makedirs(image_dir, exist_ok=True)
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        image_filename = f"{timestamp}.jpg"
        image_path = os.path.join(image_dir, image_filename)
        image.save(image_path)
    except Exception as e:
        print(f"Failed to save image locally: {e}")
    finally:
        if image_path and os.path.exists(image_path):
            try:
                os.remove(image_path)
            except Exception as cleanup_error:
                print(f"Failed to delete temporary image: {cleanup_error}")

    return (
        message,
        image,
        leaderboard_table,
        gr.update(visible=False),
        gr.update(visible=True),
        username
    )

def get_random_prompt():
    return random.choice(PROMPT_LIST) if PROMPT_LIST else "A synthetic scene with dramatic lighting"

def load_initial_state():
    sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True)
    leaderboard_table = [[name, points] for name, points in sorted_scores]
    return gr.update(value=get_random_prompt()), leaderboard_table

# --- Gradio UI ---
with gr.Blocks(css=".gr-button {font-size: 16px !important}") as demo:
    gr.Markdown("## 🌝 OpenFake Arena")
    gr.Markdown("Welcome to the OpenFake Arena!\n\n**Your mission:** Generate a synthetic image for the prompt, upload it, and try to fool the AI detector into thinking it’s real.\n\n**Rules:**\n\n- You can modify the prompt on your end, but the image needs to have the same content. We verify the content with a CLIP similarity threshold.\n\n- Enter \"real\" in the model used to upload and test a real image. You don't need to follow the prompt for real images. Tips: you can also enter \"real\" if you just want to test the detector! We won't be collecting those images. \n\n- It is important to enter the correct model name for licensing.\n\n- Only synthetic images count toward the leaderboard!\n\n\nNote: The detector is still in early development. The prompt is not used for prediction, only the image.")

    with gr.Group(visible=True) as input_section:
        username_input = gr.Textbox(label="Your Name", placeholder="Enter your name", interactive=True)
        model_input = gr.Textbox(label="Model used, specify the version (e.g., Imagen 3, Dall-e 3,  Midjourney 6). Write \"Real\" when uploading a real image.", placeholder="Name of the model used to generate the image", interactive=True)

        # 🚫 Freeze this block: do not allow edits to the prompt input component's configuration.
        with gr.Row():
            prompt_input = gr.Textbox(
                interactive=False,
                label="Prompt to match",
                placeholder="e.g., ...",
                value="",
                lines=2
            )

        with gr.Row():
            image_input = gr.Image(type="pil", label="Upload Synthetic Image")

        with gr.Row():
            submit_btn = gr.Button("Upload")

    try_again_btn = gr.Button("Try Again", visible=False)

    with gr.Group():
        gr.Markdown("### 🎯 Result")
        with gr.Row():
            prediction_output = gr.Textbox(label="Prediction", interactive=False, elem_id="prediction_box")
            image_output = gr.Image(label="Submitted Image", show_label=False)

    with gr.Group():
        gr.Markdown("### πŸ† Leaderboard")
        leaderboard = gr.Dataframe(
            headers=["Username", "Score"],
            datatype=["str", "number"],
            interactive=False,
            row_count=5,
            visible=True
        )

    submit_btn.click(
        fn=detect_with_model,
        inputs=[image_input, prompt_input, username_input, model_input],
        outputs=[
            prediction_output,
            image_output,
            leaderboard,
            input_section,
            try_again_btn,
            username_input
        ]
    )

    try_again_btn.click(
        fn=lambda name: (
            "",               # Clear prediction text
            None,             # Clear uploaded image
            leaderboard,               # Clear leaderboard (temporarily, gets reloaded on next submit)
            gr.update(visible=True),   # Show input section
            gr.update(visible=False),  # Hide "Try Again" button
            name,             # Keep username
            gr.update(value=get_random_prompt()),  # Load new prompt
            None              # Clear image input
        ),
        inputs=[username_input],
        outputs=[
            prediction_output,
            image_output,
            leaderboard,
            input_section,
            try_again_btn,
            username_input,
            prompt_input,
            image_input        # ← added output to clear image
        ]
    )

    demo.load(
        fn=load_initial_state,
        outputs=[prompt_input, leaderboard]
    )


    gr.HTML("""
    <script>
    document.addEventListener('DOMContentLoaded', function () {
        const target = document.getElementById('prediction_box');
        const observer = new MutationObserver(() => {
            if (target && target.innerText.trim() !== '') {
                window.scrollTo({ top: 0, behavior: 'smooth' });
            }
        });
        if (target) {
            observer.observe(target, { childList: true, subtree: true });
        }
    });
    </script>
    """)

if __name__ == "__main__":
    demo.launch()