Spaces:
Runtime error
Runtime error
Update texture_transfer.py
Browse files- texture_transfer.py +71 -71
texture_transfer.py
CHANGED
|
@@ -1,71 +1,71 @@
|
|
| 1 |
-
from PIL import Image, ImageOps
|
| 2 |
-
import numpy as np
|
| 3 |
-
from create_print_layover import create_hard_light_layover
|
| 4 |
-
import cv2
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def create_layover(background_image, layer_image, opacity):
|
| 8 |
-
background_img_raw = Image.open(background_image)
|
| 9 |
-
background_img_raw =
|
| 10 |
-
background_img = np.array(background_img_raw)
|
| 11 |
-
background_img_float = background_img.astype(float)
|
| 12 |
-
foreground_img_raw = Image.open(layer_image)
|
| 13 |
-
foreground_img_raw =
|
| 14 |
-
foreground_img = np.array(foreground_img_raw)
|
| 15 |
-
foreground_img_float = foreground_img.astype(float)
|
| 16 |
-
blended_img_float = create_hard_light_layover(background_img_float, foreground_img_float, opacity)
|
| 17 |
-
blended_img = np.uint8(blended_img_float)
|
| 18 |
-
blended_img_raw = Image.fromarray(blended_img)
|
| 19 |
-
output_path = "lay_over_image.png"
|
| 20 |
-
blended_img_raw.save(output_path)
|
| 21 |
-
return output_path
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
def create_image_tile(input_patch, x_dim, y_dim):
|
| 25 |
-
input_image = Image.open(input_patch)
|
| 26 |
-
input_image = input_image.convert("RGB")
|
| 27 |
-
width, height = input_image.size
|
| 28 |
-
output_image = Image.new("RGB", (x_dim, y_dim))
|
| 29 |
-
for y in range(0, y_dim, height):
|
| 30 |
-
for x in range(0, x_dim, width):
|
| 31 |
-
region_height = min(height, y_dim - y)
|
| 32 |
-
region_width = min(width, x_dim - x)
|
| 33 |
-
region = input_image.crop((0, 0, region_width, region_height))
|
| 34 |
-
output_image.paste(region, (x, y))
|
| 35 |
-
output_image.save('tiled_image.png')
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def create_image_cutout(texture_transfer_image, actual_mask):
|
| 39 |
-
image = Image.open(texture_transfer_image)
|
| 40 |
-
mask = Image.open(actual_mask).convert('L')
|
| 41 |
-
if mask.size != image.size:
|
| 42 |
-
image = image.resize(mask.size, Image.Resampling.NEAREST)
|
| 43 |
-
image_np = np.array(image)
|
| 44 |
-
mask_np = np.array(mask)
|
| 45 |
-
binary_mask = (mask_np > 127).astype(np.uint8) * 255
|
| 46 |
-
masked_image_np = image_np * np.expand_dims(binary_mask, axis=-1) // 255
|
| 47 |
-
masked_image = Image.fromarray(masked_image_np)
|
| 48 |
-
masked_image.save('cut_out_image.png')
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
def paste_image(base_image_path, cutout_image_path, mask_path):
|
| 52 |
-
background = Image.open(base_image_path).convert("RGB")
|
| 53 |
-
cutout = Image.open(cutout_image_path)
|
| 54 |
-
mask = Image.open(mask_path).convert("L")
|
| 55 |
-
if cutout.mode == 'RGBA':
|
| 56 |
-
cutout_rgb = cutout.convert("RGB")
|
| 57 |
-
cutout_alpha = cutout.split()[-1]
|
| 58 |
-
else:
|
| 59 |
-
cutout_rgb = cutout
|
| 60 |
-
cutout_alpha = mask
|
| 61 |
-
cutout_rgb = cutout_rgb.resize(background.size, Image.Resampling.NEAREST)
|
| 62 |
-
cutout_alpha = cutout_alpha.resize(background.size, Image.Resampling.NEAREST)
|
| 63 |
-
cutout_alpha_np = np.array(cutout_alpha)
|
| 64 |
-
binary_mask = (cutout_alpha_np > 128).astype(np.uint8) * 255
|
| 65 |
-
cutout_rgb_np = np.array(cutout_rgb)
|
| 66 |
-
background_np = np.array(background)
|
| 67 |
-
cutout_masked = cutout_rgb_np * np.expand_dims(binary_mask, axis=-1) // 255
|
| 68 |
-
background_masked = background_np * np.expand_dims(255 - binary_mask, axis=-1) // 255
|
| 69 |
-
result_np = cutout_masked + background_masked
|
| 70 |
-
result = Image.fromarray(result_np.astype(np.uint8))
|
| 71 |
-
result.save('result.png')
|
|
|
|
| 1 |
+
from PIL import Image, ImageOps
|
| 2 |
+
import numpy as np
|
| 3 |
+
from create_print_layover import create_hard_light_layover
|
| 4 |
+
import cv2
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def create_layover(background_image, layer_image, opacity):
|
| 8 |
+
# background_img_raw = Image.open(background_image)
|
| 9 |
+
background_img_raw = background_image.convert("RGBA")
|
| 10 |
+
background_img = np.array(background_img_raw)
|
| 11 |
+
background_img_float = background_img.astype(float)
|
| 12 |
+
# foreground_img_raw = Image.open(layer_image)
|
| 13 |
+
foreground_img_raw = layer_image.convert("RGBA")
|
| 14 |
+
foreground_img = np.array(foreground_img_raw)
|
| 15 |
+
foreground_img_float = foreground_img.astype(float)
|
| 16 |
+
blended_img_float = create_hard_light_layover(background_img_float, foreground_img_float, opacity)
|
| 17 |
+
blended_img = np.uint8(blended_img_float)
|
| 18 |
+
blended_img_raw = Image.fromarray(blended_img)
|
| 19 |
+
output_path = "lay_over_image.png"
|
| 20 |
+
blended_img_raw.save(output_path)
|
| 21 |
+
return output_path
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def create_image_tile(input_patch, x_dim, y_dim):
|
| 25 |
+
input_image = Image.open(input_patch)
|
| 26 |
+
input_image = input_image.convert("RGB")
|
| 27 |
+
width, height = input_image.size
|
| 28 |
+
output_image = Image.new("RGB", (x_dim, y_dim))
|
| 29 |
+
for y in range(0, y_dim, height):
|
| 30 |
+
for x in range(0, x_dim, width):
|
| 31 |
+
region_height = min(height, y_dim - y)
|
| 32 |
+
region_width = min(width, x_dim - x)
|
| 33 |
+
region = input_image.crop((0, 0, region_width, region_height))
|
| 34 |
+
output_image.paste(region, (x, y))
|
| 35 |
+
output_image.save('tiled_image.png')
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def create_image_cutout(texture_transfer_image, actual_mask):
|
| 39 |
+
image = Image.open(texture_transfer_image)
|
| 40 |
+
mask = Image.open(actual_mask).convert('L')
|
| 41 |
+
if mask.size != image.size:
|
| 42 |
+
image = image.resize(mask.size, Image.Resampling.NEAREST)
|
| 43 |
+
image_np = np.array(image)
|
| 44 |
+
mask_np = np.array(mask)
|
| 45 |
+
binary_mask = (mask_np > 127).astype(np.uint8) * 255
|
| 46 |
+
masked_image_np = image_np * np.expand_dims(binary_mask, axis=-1) // 255
|
| 47 |
+
masked_image = Image.fromarray(masked_image_np)
|
| 48 |
+
masked_image.save('cut_out_image.png')
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def paste_image(base_image_path, cutout_image_path, mask_path):
|
| 52 |
+
background = Image.open(base_image_path).convert("RGB")
|
| 53 |
+
cutout = Image.open(cutout_image_path)
|
| 54 |
+
mask = Image.open(mask_path).convert("L")
|
| 55 |
+
if cutout.mode == 'RGBA':
|
| 56 |
+
cutout_rgb = cutout.convert("RGB")
|
| 57 |
+
cutout_alpha = cutout.split()[-1]
|
| 58 |
+
else:
|
| 59 |
+
cutout_rgb = cutout
|
| 60 |
+
cutout_alpha = mask
|
| 61 |
+
cutout_rgb = cutout_rgb.resize(background.size, Image.Resampling.NEAREST)
|
| 62 |
+
cutout_alpha = cutout_alpha.resize(background.size, Image.Resampling.NEAREST)
|
| 63 |
+
cutout_alpha_np = np.array(cutout_alpha)
|
| 64 |
+
binary_mask = (cutout_alpha_np > 128).astype(np.uint8) * 255
|
| 65 |
+
cutout_rgb_np = np.array(cutout_rgb)
|
| 66 |
+
background_np = np.array(background)
|
| 67 |
+
cutout_masked = cutout_rgb_np * np.expand_dims(binary_mask, axis=-1) // 255
|
| 68 |
+
background_masked = background_np * np.expand_dims(255 - binary_mask, axis=-1) // 255
|
| 69 |
+
result_np = cutout_masked + background_masked
|
| 70 |
+
result = Image.fromarray(result_np.astype(np.uint8))
|
| 71 |
+
result.save('result.png')
|