Spaces:
Build error
Build error
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| tokenizer = AutoTokenizer.from_pretrained("Armandoliv/t5-small-summarizer-scitldr") | |
| model = AutoModelForSeq2SeqLM.from_pretrained("Armandoliv/t5-small-summarizer-scitldr") | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| model = model.to(device) | |
| def main_summarizer(text): | |
| max_input_length = 1024 | |
| preprocess_text = text.strip().replace("\n"," ").replace("’", "'").strip() | |
| tokenized_text = tokenizer.encode(preprocess_text, return_tensors="pt", truncation=True, max_length=max_input_length,).to(device) | |
| summary_ids = model.generate( | |
| tokenized_text, | |
| max_length=256, | |
| num_beams=8, | |
| repetition_penalty=3.0, | |
| length_penalty=2.5, | |
| early_stopping=False | |
| ) | |
| output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
| return output | |
| inputs = [gr.Textbox(lines=10, placeholder="Text Here...", label="Input")] | |
| outputs = gr.Text( label="Summary") | |
| title="Text summarisation app" | |
| description = "This demo uses AI Models to summarize long text.\nIt focus on scientific texts." | |
| io = gr.Interface(fn=main_summarizer, inputs=inputs, outputs=outputs, title=title, description = description, | |
| css= """.gr-button-primary { background: -webkit-linear-gradient( | |
| 90deg, #355764 0%, #55a8a1 100% ) !important; background: #355764; | |
| background: linear-gradient( | |
| 90deg, #355764 0%, #55a8a1 100% ) !important; | |
| background: -moz-linear-gradient( 90deg, #355764 0%, #55a8a1 100% ) !important; | |
| background: -webkit-linear-gradient( | |
| 90deg, #355764 0%, #55a8a1 100% ) !important; | |
| color:white !important}""" | |
| ) | |
| io.launch() | |