Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import joblib | |
| import numpy as np | |
| import pandas as pd | |
| from MLmodel import PrepProcesor, columns | |
| model = joblib.load('LGmodel.joblib') | |
| st.title("Did the project succeed") | |
| Wallet_distribution = st.select_slider('Choose distribution score', [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) | |
| Whale_anomalie_activities = st.select_slider('Choose anomalie activities', [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) | |
| Locked_period = st.slider('Remaining days to next unlocked date', 0,180) | |
| Operation_duration = st.number_input('Operation duration', 0,1000) | |
| PR_articles = st.number_input('PR article number', 0, 1000) | |
| Decentralized_transaction = st.select_slider('Transactions percentage in decentralized exchanges',[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] ) | |
| twitter_followers_growthrate = st.number_input('twitter followers increased rate', -0.5,0.5) | |
| unique_address_growthrate = st.select_slider('Unique address weekly growth rate', [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) | |
| month_transaction_growthrate = st.number_input('Monthly transaction increased rate', -0.5,3.0) | |
| github_update = st.number_input("Project's github monthly update frequency", 0, 30) | |
| code_review_report = st.select_slider('Has a review report or no, true=0, false=1', [0, 1]) | |
| publicChain_safety = st.number_input('How many vulnerabilities for the used blockchain', 0,100) | |
| investedProjects = st.select_slider('Risky invested projects weight', [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) | |
| token_price = st.number_input('Input the token price', 0.0, 1000.0) | |
| token_voltality_overDot = st.number_input('Input the token price voltality over the Dot price', -0.5,3.0) | |
| negative = st.number_input('twitter comments? Negative=-1', 0,1) | |
| neutre = st.number_input('twitter comments? neutre=0', 0,1) | |
| positive = st.number_input('twitter comments? positive=1', 0,1) | |
| KOL_comments = st.slider('How many negative comments that the KOLs have made', 0,100) | |
| media_negatifReport = st.number_input('How many negative media report concerning this project', 0,100) | |
| #st.text_input('Input passenger id', '12345') | |
| # passengerclass = st.select_slider('Choose passenger class', [1,2,3]) | |
| # name = st.text_input('Input the passenger name', 'John Smith') | |
| # gender = st.select_slider('Select gender', ['male', 'female']) | |
| # age = st.slider('Input age', 0,100) | |
| # sibsp = st.slider('Input siblings', 0, 10) | |
| # parch = st.slider('Input parents/children', 0, 2) | |
| # ticketid = st.number_input('Ticket number', 12345) | |
| # fare = st.number_input('Fare amount', 0,100) | |
| # cabin = st.text_input('Enter cabin', 'C52') | |
| # embarked = st.selectbox('Choose embarkation point', ["S", "C","Q"]) | |
| def predict(): | |
| row = np.array([Wallet_distribution, Whale_anomalie_activities, Locked_period, Operation_duration, PR_articles, Decentralized_transaction,twitter_followers_growthrate, unique_address_growthrate, month_transaction_growthrate, | |
| github_update, code_review_report, publicChain_safety, investedProjects, | |
| token_price,token_voltality_overDot, negative, neutre, positive, KOL_comments, media_negatifReport]) | |
| X = pd.DataFrame([row], columns=columns) | |
| prediction = model.predict(X)[0] | |
| if prediction == 1: | |
| st.success('Project succeed :thumbsup:') | |
| else: | |
| st.error("Project did not succeed :thumbsdown:") | |
| trigger = st.button('Predict', on_click=predict) | |