Spaces:
Runtime error
Runtime error
Commit
·
540f528
1
Parent(s):
1c20cd5
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from MLmodel import PrepProcesor, columns
|
| 6 |
+
model = joblib.load('F:\我的量化\Risk_protocol\LGmodel.joblib')
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
st.title("Did the project succeed")
|
| 10 |
+
Wallet_distribution = st.select_slider('Choose distribution score', [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0])
|
| 11 |
+
Whale_anomalie_activities = st.select_slider('Choose anomalie activities', [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0])
|
| 12 |
+
Locked_period = st.slider('Remaining days to next unlocked date', 0,180)
|
| 13 |
+
Operation_duration = st.number_input('Operation duration', 0,1000)
|
| 14 |
+
PR_articles = st.number_input('PR article number', 0, 1000)
|
| 15 |
+
Decentralized_transaction = st.select_slider('Transactions percentage in decentralized exchanges',[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] )
|
| 16 |
+
twitter_followers_growthrate = st.number_input('twitter followers increased rate', -0.5,0.5)
|
| 17 |
+
unique_address_growthrate = st.select_slider('Unique address weekly growth rate', [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0])
|
| 18 |
+
month_transaction_growthrate = st.number_input('Monthly transaction increased rate', -0.5,3.0)
|
| 19 |
+
github_update = st.number_input("Project's github monthly update frequency", 0, 30)
|
| 20 |
+
code_review_report = st.select_slider('Has a review report or no, true=0, false=1', [0, 1])
|
| 21 |
+
publicChain_safety = st.number_input('How many vulnerabilities for the used blockchain', 0,100)
|
| 22 |
+
investedProjects = st.select_slider('Risky invested projects weight', [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0])
|
| 23 |
+
token_price = st.number_input('Input the token price', 0.0, 1000.0)
|
| 24 |
+
token_voltality_overDot = st.number_input('Input the token price voltality over the Dot price', -0.5,3.0)
|
| 25 |
+
negative = st.number_input('twitter comments? Negative=-1', 0,1)
|
| 26 |
+
neutre = st.number_input('twitter comments? neutre=0', 0,1)
|
| 27 |
+
positive = st.number_input('twitter comments? positive=1', 0,1)
|
| 28 |
+
KOL_comments = st.slider('How many negative comments that the KOLs have made', 0,100)
|
| 29 |
+
media_negatifReport = st.number_input('How many negative media report concerning this project', 0,100)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
#st.text_input('Input passenger id', '12345')
|
| 33 |
+
# passengerclass = st.select_slider('Choose passenger class', [1,2,3])
|
| 34 |
+
# name = st.text_input('Input the passenger name', 'John Smith')
|
| 35 |
+
# gender = st.select_slider('Select gender', ['male', 'female'])
|
| 36 |
+
# age = st.slider('Input age', 0,100)
|
| 37 |
+
# sibsp = st.slider('Input siblings', 0, 10)
|
| 38 |
+
# parch = st.slider('Input parents/children', 0, 2)
|
| 39 |
+
# ticketid = st.number_input('Ticket number', 12345)
|
| 40 |
+
# fare = st.number_input('Fare amount', 0,100)
|
| 41 |
+
# cabin = st.text_input('Enter cabin', 'C52')
|
| 42 |
+
# embarked = st.selectbox('Choose embarkation point', ["S", "C","Q"])
|
| 43 |
+
|
| 44 |
+
def predict():
|
| 45 |
+
row = np.array([Wallet_distribution, Whale_anomalie_activities, Locked_period, Operation_duration, PR_articles, Decentralized_transaction,twitter_followers_growthrate, unique_address_growthrate, month_transaction_growthrate,
|
| 46 |
+
github_update, code_review_report, publicChain_safety, investedProjects,
|
| 47 |
+
token_price,token_voltality_overDot, negative, neutre, positive, KOL_comments, media_negatifReport])
|
| 48 |
+
X = pd.DataFrame([row], columns=columns)
|
| 49 |
+
prediction = model.predict(X)[0]
|
| 50 |
+
|
| 51 |
+
if prediction == 1:
|
| 52 |
+
st.success('Project succeed :thumbsup:')
|
| 53 |
+
else:
|
| 54 |
+
st.error("Project did not succeed :thumbsdown:")
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
trigger = st.button('Predict', on_click=predict)
|