Spaces:
Runtime error
Runtime error
Deploy Gradio app with multiple files
Browse files- app.py +239 -0
- config.py +26 -0
- models.py +68 -0
- requirements.txt +9 -0
- utils.py +146 -0
app.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import DiffusionPipeline
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import os
|
| 8 |
+
import tempfile
|
| 9 |
+
from typing import Optional, Tuple
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
from config import MODEL_ID, DEFAULT_HEIGHT, DEFAULT_WIDTH, DEFAULT_NUM_FRAMES, DEFAULT_NUM_INFERENCE_STEPS
|
| 13 |
+
from utils import create_video_from_frames, save_video_temp, cleanup_temp_files
|
| 14 |
+
from models import load_pipeline
|
| 15 |
+
|
| 16 |
+
# Global pipeline variable
|
| 17 |
+
pipeline = None
|
| 18 |
+
|
| 19 |
+
@spaces.GPU(duration=300)
|
| 20 |
+
def initialize_model():
|
| 21 |
+
"""Initialize the Open-Sora-v2 pipeline"""
|
| 22 |
+
global pipeline
|
| 23 |
+
if pipeline is None:
|
| 24 |
+
pipeline = load_pipeline()
|
| 25 |
+
return "Model loaded successfully!"
|
| 26 |
+
|
| 27 |
+
@spaces.GPU(duration=180)
|
| 28 |
+
def generate_video(
|
| 29 |
+
prompt: str,
|
| 30 |
+
height: int = DEFAULT_HEIGHT,
|
| 31 |
+
width: int = DEFAULT_WIDTH,
|
| 32 |
+
num_frames: int = DEFAULT_NUM_FRAMES,
|
| 33 |
+
num_inference_steps: int = DEFAULT_NUM_INFERENCE_STEPS,
|
| 34 |
+
seed: Optional[int] = None,
|
| 35 |
+
progress=gr.Progress()
|
| 36 |
+
) -> Tuple[str, str]:
|
| 37 |
+
"""
|
| 38 |
+
Generate a video from text prompt using Open-Sora-v2
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
prompt (str): Text description of the video to generate
|
| 42 |
+
height (int): Height of the video frames
|
| 43 |
+
width (int): Width of the video frames
|
| 44 |
+
num_frames (int): Number of frames to generate
|
| 45 |
+
num_inference_steps (int): Number of denoising steps
|
| 46 |
+
seed (int, optional): Random seed for reproducible generation
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
Tuple[str, str]: Path to generated video file and status message
|
| 50 |
+
"""
|
| 51 |
+
try:
|
| 52 |
+
# Initialize model if not already done
|
| 53 |
+
if pipeline is None:
|
| 54 |
+
progress(0.1, desc="Loading model...")
|
| 55 |
+
initialize_model()
|
| 56 |
+
|
| 57 |
+
# Set seed for reproducibility
|
| 58 |
+
if seed is not None:
|
| 59 |
+
torch.manual_seed(seed)
|
| 60 |
+
|
| 61 |
+
progress(0.2, desc="Generating video frames...")
|
| 62 |
+
|
| 63 |
+
# Generate video frames
|
| 64 |
+
video_frames = pipeline(
|
| 65 |
+
prompt=prompt,
|
| 66 |
+
height=height,
|
| 67 |
+
width=width,
|
| 68 |
+
num_frames=num_frames,
|
| 69 |
+
num_inference_steps=num_inference_steps,
|
| 70 |
+
guidance_scale=7.5,
|
| 71 |
+
).frames
|
| 72 |
+
|
| 73 |
+
progress(0.8, desc="Processing video...")
|
| 74 |
+
|
| 75 |
+
# Convert frames to video
|
| 76 |
+
video_path = save_video_temp(video_frames, fps=24)
|
| 77 |
+
|
| 78 |
+
progress(1.0, desc="Complete!")
|
| 79 |
+
|
| 80 |
+
return video_path, f"✅ Video generated successfully! ({len(video_frames)} frames)"
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
error_msg = f"❌ Error generating video: {str(e)}"
|
| 84 |
+
return None, error_msg
|
| 85 |
+
|
| 86 |
+
def update_interface():
|
| 87 |
+
"""Update interface based on model availability"""
|
| 88 |
+
return gr.update(interactive=True)
|
| 89 |
+
|
| 90 |
+
def create_demo():
|
| 91 |
+
"""Create the Gradio demo interface"""
|
| 92 |
+
|
| 93 |
+
with gr.Blocks(
|
| 94 |
+
title="Open-Sora-v2 Text to Video",
|
| 95 |
+
theme=gr.themes.Soft(),
|
| 96 |
+
css="""
|
| 97 |
+
.gradio-container {
|
| 98 |
+
max-width: 1200px !important;
|
| 99 |
+
}
|
| 100 |
+
.generate-btn {
|
| 101 |
+
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%) !important;
|
| 102 |
+
}
|
| 103 |
+
"""
|
| 104 |
+
) as demo:
|
| 105 |
+
|
| 106 |
+
gr.HTML("""
|
| 107 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
| 108 |
+
<h1>🎬 Open-Sora-v2 Text to Video Generator</h1>
|
| 109 |
+
<p>Generate amazing videos from text descriptions using Open-Sora-v2 model</p>
|
| 110 |
+
<p><a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">Built with anycoder</a></p>
|
| 111 |
+
</div>
|
| 112 |
+
""")
|
| 113 |
+
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column(scale=2):
|
| 116 |
+
# Input section
|
| 117 |
+
gr.Markdown("## 📝 Input")
|
| 118 |
+
|
| 119 |
+
prompt_input = gr.Textbox(
|
| 120 |
+
label="Video Description",
|
| 121 |
+
placeholder="Describe the video you want to generate...",
|
| 122 |
+
lines=3,
|
| 123 |
+
value="A beautiful sunset over the ocean with waves gently rolling"
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 127 |
+
with gr.Row():
|
| 128 |
+
height_input = gr.Number(
|
| 129 |
+
label="Height",
|
| 130 |
+
value=DEFAULT_HEIGHT,
|
| 131 |
+
minimum=256,
|
| 132 |
+
maximum=1024,
|
| 133 |
+
step=64
|
| 134 |
+
)
|
| 135 |
+
width_input = gr.Number(
|
| 136 |
+
label="Width",
|
| 137 |
+
value=DEFAULT_WIDTH,
|
| 138 |
+
minimum=256,
|
| 139 |
+
maximum=1024,
|
| 140 |
+
step=64
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
with gr.Row():
|
| 144 |
+
num_frames_input = gr.Slider(
|
| 145 |
+
label="Number of Frames",
|
| 146 |
+
value=DEFAULT_NUM_FRAMES,
|
| 147 |
+
minimum=16,
|
| 148 |
+
maximum=120,
|
| 149 |
+
step=8
|
| 150 |
+
)
|
| 151 |
+
num_steps_input = gr.Slider(
|
| 152 |
+
label="Inference Steps",
|
| 153 |
+
value=DEFAULT_NUM_INFERENCE_STEPS,
|
| 154 |
+
minimum=10,
|
| 155 |
+
maximum=100,
|
| 156 |
+
step=5
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
seed_input = gr.Number(
|
| 160 |
+
label="Seed (optional)",
|
| 161 |
+
value=None,
|
| 162 |
+
precision=0
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
generate_btn = gr.Button(
|
| 166 |
+
"🎥 Generate Video",
|
| 167 |
+
variant="primary",
|
| 168 |
+
size="lg",
|
| 169 |
+
elem_classes=["generate-btn"]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
with gr.Column(scale=1):
|
| 173 |
+
# Output section
|
| 174 |
+
gr.Markdown("## 🎥 Output")
|
| 175 |
+
|
| 176 |
+
video_output = gr.Video(
|
| 177 |
+
label="Generated Video",
|
| 178 |
+
height=400
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
status_output = gr.Textbox(
|
| 182 |
+
label="Status",
|
| 183 |
+
interactive=False
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Example prompts
|
| 187 |
+
gr.Markdown("## 💡 Example Prompts")
|
| 188 |
+
|
| 189 |
+
examples = [
|
| 190 |
+
"A majestic eagle soaring through mountain peaks at sunrise",
|
| 191 |
+
"A busy city street with neon lights at night, cyberpunk style",
|
| 192 |
+
"A peaceful garden with butterflies fluttering around colorful flowers",
|
| 193 |
+
"A robot dancing in a futuristic disco with colorful lights",
|
| 194 |
+
"A serene lake reflecting autumn trees with falling leaves"
|
| 195 |
+
]
|
| 196 |
+
|
| 197 |
+
with gr.Row():
|
| 198 |
+
for i, example in enumerate(examples):
|
| 199 |
+
example_btn = gr.Button(example, size="sm")
|
| 200 |
+
example_btn.click(
|
| 201 |
+
lambda x=example: x,
|
| 202 |
+
outputs=prompt_input
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
# Event handlers
|
| 206 |
+
generate_btn.click(
|
| 207 |
+
fn=generate_video,
|
| 208 |
+
inputs=[
|
| 209 |
+
prompt_input,
|
| 210 |
+
height_input,
|
| 211 |
+
width_input,
|
| 212 |
+
num_frames_input,
|
| 213 |
+
num_steps_input,
|
| 214 |
+
seed_input
|
| 215 |
+
],
|
| 216 |
+
outputs=[video_output, status_output],
|
| 217 |
+
show_progress=True
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# Initialize model on startup
|
| 221 |
+
demo.load(
|
| 222 |
+
fn=initialize_model,
|
| 223 |
+
outputs=[status_output]
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Cleanup on page close
|
| 227 |
+
demo.unload(
|
| 228 |
+
fn=cleanup_temp_files
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
return demo
|
| 232 |
+
|
| 233 |
+
if __name__ == "__main__":
|
| 234 |
+
demo = create_demo()
|
| 235 |
+
demo.launch(
|
| 236 |
+
share=True,
|
| 237 |
+
show_error=True,
|
| 238 |
+
show_api=True
|
| 239 |
+
)
|
config.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model configuration
|
| 2 |
+
MODEL_ID = "hpcai-tech/Open-Sora-v2"
|
| 3 |
+
|
| 4 |
+
# Default video generation parameters
|
| 5 |
+
DEFAULT_HEIGHT = 320
|
| 6 |
+
DEFAULT_WIDTH = 576
|
| 7 |
+
DEFAULT_NUM_FRAMES = 64
|
| 8 |
+
DEFAULT_NUM_INFERENCE_STEPS = 50
|
| 9 |
+
|
| 10 |
+
# UI Configuration
|
| 11 |
+
MAX_PROMPT_LENGTH = 1000
|
| 12 |
+
MIN_HEIGHT = 256
|
| 13 |
+
MAX_HEIGHT = 1024
|
| 14 |
+
MIN_WIDTH = 256
|
| 15 |
+
MAX_WIDTH = 1024
|
| 16 |
+
MIN_FRAMES = 16
|
| 17 |
+
MAX_FRAMES = 120
|
| 18 |
+
MIN_STEPS = 10
|
| 19 |
+
MAX_STEPS = 100
|
| 20 |
+
|
| 21 |
+
# File paths
|
| 22 |
+
TEMP_DIR = tempfile.gettempdir()
|
| 23 |
+
VIDEO_DIR = os.path.join(TEMP_DIR, "opensora_videos")
|
| 24 |
+
|
| 25 |
+
# Ensure video directory exists
|
| 26 |
+
os.makedirs(VIDEO_DIR, exist_ok=True)
|
models.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import DiffusionPipeline
|
| 3 |
+
import spaces
|
| 4 |
+
from config import MODEL_ID
|
| 5 |
+
|
| 6 |
+
def load_pipeline():
|
| 7 |
+
"""
|
| 8 |
+
Load and configure the Open-Sora-v2 pipeline
|
| 9 |
+
"""
|
| 10 |
+
try:
|
| 11 |
+
# Load the pipeline with appropriate configuration
|
| 12 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 13 |
+
MODEL_ID,
|
| 14 |
+
torch_dtype=torch.float16,
|
| 15 |
+
variant="fp16",
|
| 16 |
+
use_safetensors=True
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Move to GPU if available
|
| 20 |
+
if torch.cuda.is_available():
|
| 21 |
+
pipeline = pipeline.to("cuda")
|
| 22 |
+
|
| 23 |
+
# Enable memory efficient attention if available
|
| 24 |
+
try:
|
| 25 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
| 26 |
+
except Exception:
|
| 27 |
+
print("xformers not available, using default attention")
|
| 28 |
+
|
| 29 |
+
# Enable CPU offloading for memory efficiency
|
| 30 |
+
pipeline.enable_model_cpu_offload()
|
| 31 |
+
|
| 32 |
+
return pipeline
|
| 33 |
+
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error loading pipeline: {e}")
|
| 36 |
+
raise
|
| 37 |
+
|
| 38 |
+
@spaces.GPU(duration=1500)
|
| 39 |
+
def compile_transformer():
|
| 40 |
+
"""
|
| 41 |
+
Optional: Compile the transformer for better performance
|
| 42 |
+
This is experimental and may not work with all models
|
| 43 |
+
"""
|
| 44 |
+
try:
|
| 45 |
+
pipeline = load_pipeline()
|
| 46 |
+
|
| 47 |
+
# Capture example inputs
|
| 48 |
+
with spaces.aoti_capture(pipeline.transformer) as call:
|
| 49 |
+
pipeline("test prompt generation")
|
| 50 |
+
|
| 51 |
+
# Export the model
|
| 52 |
+
exported = torch.export.export(
|
| 53 |
+
pipeline.transformer,
|
| 54 |
+
args=call.args,
|
| 55 |
+
kwargs=call.kwargs,
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Compile the exported model
|
| 59 |
+
compiled_transformer = spaces.aoti_compile(exported)
|
| 60 |
+
|
| 61 |
+
# Apply compiled model to pipeline
|
| 62 |
+
spaces.aoti_apply(compiled_transformer, pipeline.transformer)
|
| 63 |
+
|
| 64 |
+
return pipeline
|
| 65 |
+
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Compilation failed, using unoptimized model: {e}")
|
| 68 |
+
return load_pipeline()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
diffusers
|
| 4 |
+
transformers
|
| 5 |
+
accelerate
|
| 6 |
+
imageio
|
| 7 |
+
Pillow
|
| 8 |
+
numpy
|
| 9 |
+
spaces
|
utils.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import tempfile
|
| 3 |
+
import os
|
| 4 |
+
import imageio
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from typing import List, Optional
|
| 7 |
+
import shutil
|
| 8 |
+
|
| 9 |
+
def create_video_from_frames(frames: List[np.ndarray], fps: int = 24) -> str:
|
| 10 |
+
"""
|
| 11 |
+
Create a video file from a list of frames
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
frames (List[np.ndarray]): List of video frames as numpy arrays
|
| 15 |
+
fps (int): Frames per second for the output video
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
str: Path to the generated video file
|
| 19 |
+
"""
|
| 20 |
+
if not frames:
|
| 21 |
+
raise ValueError("No frames provided")
|
| 22 |
+
|
| 23 |
+
# Create temporary file
|
| 24 |
+
temp_dir = tempfile.mkdtemp()
|
| 25 |
+
video_path = os.path.join(temp_dir, "generated_video.mp4")
|
| 26 |
+
|
| 27 |
+
# Ensure frames are in the right format
|
| 28 |
+
processed_frames = []
|
| 29 |
+
for frame in frames:
|
| 30 |
+
if isinstance(frame, np.ndarray):
|
| 31 |
+
# Convert numpy array to PIL Image
|
| 32 |
+
if frame.dtype != np.uint8:
|
| 33 |
+
frame = (frame * 255).astype(np.uint8)
|
| 34 |
+
if len(frame.shape) == 3 and frame.shape[2] == 3:
|
| 35 |
+
# RGB image
|
| 36 |
+
pil_image = Image.fromarray(frame, mode='RGB')
|
| 37 |
+
elif len(frame.shape) == 3 and frame.shape[2] == 4:
|
| 38 |
+
# RGBA image
|
| 39 |
+
pil_image = Image.fromarray(frame, mode='RGBA')
|
| 40 |
+
else:
|
| 41 |
+
# Grayscale
|
| 42 |
+
pil_image = Image.fromarray(frame, mode='L')
|
| 43 |
+
else:
|
| 44 |
+
# Assume it's already a PIL Image
|
| 45 |
+
pil_image = frame
|
| 46 |
+
|
| 47 |
+
processed_frames.append(pil_image)
|
| 48 |
+
|
| 49 |
+
# Save as video
|
| 50 |
+
with imageio.get_writer(video_path, fps=fps) as writer:
|
| 51 |
+
for frame in processed_frames:
|
| 52 |
+
# Convert PIL to numpy array
|
| 53 |
+
frame_array = np.array(frame)
|
| 54 |
+
writer.append_data(frame_array)
|
| 55 |
+
|
| 56 |
+
return video_path
|
| 57 |
+
|
| 58 |
+
def save_video_temp(frames: List, fps: int = 24) -> str:
|
| 59 |
+
"""
|
| 60 |
+
Save video frames to a temporary file
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
frames (List): List of video frames
|
| 64 |
+
fps (int): Frames per second
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
str: Path to the saved video file
|
| 68 |
+
"""
|
| 69 |
+
try:
|
| 70 |
+
return create_video_from_frames(frames, fps)
|
| 71 |
+
except Exception as e:
|
| 72 |
+
# Fallback: save as GIF if video creation fails
|
| 73 |
+
temp_dir = tempfile.mkdtemp()
|
| 74 |
+
gif_path = os.path.join(temp_dir, "generated_video.gif")
|
| 75 |
+
|
| 76 |
+
# Convert frames to PIL Images and save as GIF
|
| 77 |
+
pil_frames = []
|
| 78 |
+
for frame in frames:
|
| 79 |
+
if isinstance(frame, np.ndarray):
|
| 80 |
+
if frame.dtype != np.uint8:
|
| 81 |
+
frame = (frame * 255).astype(np.uint8)
|
| 82 |
+
pil_frame = Image.fromarray(frame)
|
| 83 |
+
else:
|
| 84 |
+
pil_frame = frame
|
| 85 |
+
pil_frames.append(pil_frame)
|
| 86 |
+
|
| 87 |
+
if pil_frames:
|
| 88 |
+
pil_frames[0].save(
|
| 89 |
+
gif_path,
|
| 90 |
+
save_all=True,
|
| 91 |
+
append_images=pil_frames[1:],
|
| 92 |
+
duration=1000 // fps,
|
| 93 |
+
loop=0
|
| 94 |
+
)
|
| 95 |
+
return gif_path
|
| 96 |
+
else:
|
| 97 |
+
raise Exception("No valid frames to save")
|
| 98 |
+
|
| 99 |
+
def cleanup_temp_files():
|
| 100 |
+
"""Clean up temporary files"""
|
| 101 |
+
temp_dir = tempfile.gettempdir()
|
| 102 |
+
# Clean up files older than 1 hour
|
| 103 |
+
current_time = time.time()
|
| 104 |
+
for filename in os.listdir(temp_dir):
|
| 105 |
+
if filename.startswith("generated_video"):
|
| 106 |
+
file_path = os.path.join(temp_dir, filename)
|
| 107 |
+
try:
|
| 108 |
+
if os.path.getmtime(file_path) < current_time - 3600:
|
| 109 |
+
if os.path.isfile(file_path):
|
| 110 |
+
os.unlink(file_path)
|
| 111 |
+
elif os.path.isdir(file_path):
|
| 112 |
+
shutil.rmtree(file_path)
|
| 113 |
+
except Exception:
|
| 114 |
+
pass
|
| 115 |
+
|
| 116 |
+
def validate_prompt(prompt: str) -> bool:
|
| 117 |
+
"""
|
| 118 |
+
Validate that the prompt is not empty and has reasonable length
|
| 119 |
+
|
| 120 |
+
Args:
|
| 121 |
+
prompt (str): Input prompt
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
bool: True if prompt is valid
|
| 125 |
+
"""
|
| 126 |
+
if not prompt or not prompt.strip():
|
| 127 |
+
return False
|
| 128 |
+
if len(prompt.strip()) < 3:
|
| 129 |
+
return False
|
| 130 |
+
if len(prompt.strip()) > 1000:
|
| 131 |
+
return False
|
| 132 |
+
return True
|
| 133 |
+
|
| 134 |
+
def format_status_message(message: str, success: bool = True) -> str:
|
| 135 |
+
"""
|
| 136 |
+
Format status message with appropriate emoji
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
message (str): Status message
|
| 140 |
+
success (bool): Whether the operation was successful
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
str: Formatted status message
|
| 144 |
+
"""
|
| 145 |
+
emoji = "✅" if success else "❌"
|
| 146 |
+
return f"{emoji} {message}"
|