File size: 79,415 Bytes
1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 65be7f3 1f2d50a 64ced8b 1f2d50a 65be7f3 1f2d50a 64ced8b 1f2d50a 64ced8b 65be7f3 1f2d50a 64ced8b 1f2d50a 64ced8b 65be7f3 64ced8b 65be7f3 1f2d50a 65be7f3 1f2d50a 64ced8b 1f2d50a 65be7f3 64ced8b 1f2d50a 65be7f3 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 65be7f3 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 |
"""Executor Agent for real and simulated execution of planned steps.
This module contains the McpExecutorAgent implementation that bridges the gap between
planned actions and actual execution. It supports multiple execution strategies to
ensure the system remains functional across different deployment scenarios.
Architecture Overview:
The executor follows a sophisticated execution strategy pattern with multiple
fallback layers to handle real-world deployment challenges:
Execution Strategy Hierarchy:
1. Primary: Live MCP Server Calls (production quality)
2. Secondary: Simulation with Tool-Specific Logic (development/demo)
3. Tertiary: Generic Simulation (fallback safety net)
Transport Layer Support:
- HTTP POST: Standard RESTful API calls to MCP endpoints
- Server-Sent Events (SSE): Real-time streaming for long operations
- Gradio API: Alternative transport for Gradio-hosted tools
- Retry Logic: Automatic recovery from transient failures
MVP Evolution Context:
- MVP1-3: Simulation-only execution for rapid prototyping
- MVP4: Hybrid execution with live MCP server integration
- MVP4+: Enhanced error handling and recovery mechanisms
- MVP5+: Advanced execution optimization and monitoring
Key Design Principles:
1. Resilience: Graceful degradation when services are unavailable
2. Observability: Comprehensive logging for debugging and monitoring
3. User Experience: Clear error messages with actionable recovery suggestions
4. Flexibility: Support for multiple tool execution paradigms
5. Performance: Efficient retry strategies and timeout management
Error Handling Philosophy:
The executor implements a comprehensive error categorization and recovery system:
Error Categories:
- Network: Connection, timeout, DNS resolution failures
- Server: HTTP 5xx errors, service unavailability
- Client: HTTP 4xx errors, authentication, rate limiting
- Data: Malformed responses, parsing errors
- Configuration: Invalid endpoints, missing parameters
- System: Unexpected runtime errors, resource exhaustion
Recovery Strategies:
- Automatic retry with exponential backoff for transient errors
- Fallback to simulation for API failures
- User-friendly error messages with specific recovery suggestions
- Detailed error context for debugging and support
"""
import json
import logging
import random
import time
from typing import Any, Dict, List, Optional
import requests
from kg_services.ontology import PlannedStep
# Create logger for this module with structured output
logger = logging.getLogger(__name__)
class McpExecutorAgent:
"""Executor Agent that supports both real MCP calls and simulated execution.
This class provides the core execution functionality for the KGraph-MCP system,
bridging planned actions with actual tool invocation. It implements a resilient
execution strategy that can handle various deployment scenarios and failure modes.
Execution Architecture:
The agent operates on a multi-layered execution model:
Layer 1 - Real MCP Execution:
- Direct HTTP calls to live MCP servers
- Support for multiple transport protocols (HTTP, SSE, Gradio API)
- Comprehensive retry logic with exponential backoff
- Real-time error detection and categorization
Layer 2 - Intelligent Simulation:
- Tool-specific simulation logic for realistic outputs
- Context-aware error simulation for testing
- Fallback when live services are unavailable
- Maintains user experience during service outages
Layer 3 - Generic Fallback:
- Basic simulation for unknown tool types
- Safety net for unexpected execution paths
- Ensures system never completely fails
Error Handling Strategy:
The agent implements sophisticated error handling with:
- Categorized error types for targeted recovery
- User-friendly error messages with actionable suggestions
- Detailed error context for debugging and support
- Automatic fallback to simulation for API failures
Performance Characteristics:
- HTTP timeouts: Configurable per tool (default: 30s)
- Retry attempts: 2 retries with 2s delay between attempts
- Memory usage: Minimal, stateless execution model
- Concurrency: Thread-safe for parallel executions
Example Usage:
>>> executor = McpExecutorAgent()
>>>
>>> # Execute a planned step with user inputs
>>> result = executor.execute_plan_step(planned_step, {
... "input_text": "customer feedback to analyze",
... "sentiment_type": "detailed"
... })
>>>
>>> if result["status"].startswith("success_"):
... print(f"Output: {result['tool_specific_output']}")
... else:
... print(f"Error: {result['message']}")
"""
def __init__(self) -> None:
"""Initialize the McpExecutorAgent with HTTP session and retry configuration.
Sets up the execution environment with optimized HTTP session configuration,
retry parameters, and logging. The initialization is designed to be lightweight
and thread-safe for use in concurrent environments.
Configuration:
- HTTP Session: Persistent connection pooling for efficiency
- User Agent: Identifies requests as coming from KGraph-MCP
- Content Type: JSON for all MCP communications
- Retry Logic: 2 attempts with 2-second delay between retries
- Timeout Handling: Per-tool configurable timeouts
Side Effects:
- Creates persistent HTTP session for connection pooling
- Configures standard headers for MCP communication
- Logs initialization for debugging and monitoring
"""
# Configure HTTP session with persistent connections and standard headers
self.http_session = requests.Session()
self.http_session.headers.update({
"User-Agent": "KGraph-MCP/1.0", # Identifies our system to MCP servers
"Content-Type": "application/json" # Standard MCP communication format
})
# MVP4 Sprint 2 Enhanced Error Handling Configuration
self.max_retries = 2 # Number of retry attempts for transient failures
self.retry_delay = 2.0 # Seconds to wait between retry attempts
logger.info(
"McpExecutorAgent initialized for MVP 4 with enhanced error handling "
f"(max_retries={self.max_retries}, retry_delay={self.retry_delay}s)"
)
def execute_plan_step(
self, plan: PlannedStep, inputs: Dict[str, str]
) -> Dict[str, Any]:
"""Execute a planned step using the optimal execution strategy.
This is the main entry point for plan execution. It implements the multi-layered
execution strategy, attempting live MCP execution first, then falling back to
simulation if needed. The method ensures that execution always completes with
either real results or realistic simulation.
Execution Decision Tree:
1. Check tool execution type
2. If remote_mcp_gradio: Attempt live MCP execution
3. If live execution fails with API errors: Fall back to simulation
4. If live execution fails with network errors: Return error details
5. If not remote: Use simulation directly
6. Log all execution paths for observability
Args:
plan: The PlannedStep containing tool and prompt information
Must have valid tool and prompt with proper target_tool_id matching
inputs: Dictionary mapping input variable names to user-provided values
Keys should match prompt.input_variables
Returns:
Dictionary containing execution results with standardized structure:
Success Response Structure:
{
"status": "success_live_mcp" | "success_simulation",
"tool_id_used": str,
"tool_name_used": str,
"prompt_id_used": str,
"prompt_name_used": str,
"message": str, # User-friendly success message
"tool_specific_output": str, # Main result content
"execution_mode": "live_mcp" | "simulation",
"inputs_sent": dict, # What was actually sent to the tool
...additional context...
}
Error Response Structure:
{
"status": "error_*", # Specific error category
"message": str, # User-friendly error description
"error_information": {
"error_category": str, # network, server_error, etc.
"error_type": str, # Specific error classification
"recovery_suggestions": List[str] # Actionable user guidance
},
"error_details": dict, # Technical details for debugging
...execution context...
}
Execution Modes:
- live_mcp: Real HTTP call to MCP server succeeded
- simulation: Tool-specific simulation (fallback or direct)
- error_*: Various error conditions with specific categorization
Performance Considerations:
- Network calls: May take 100ms-30s depending on tool complexity
- Simulation: Typically <100ms for immediate response
- Retry logic: May add 2-6 seconds for transient failures
- Memory: Minimal per execution, stateless design
Example:
>>> plan = PlannedStep(tool=sentiment_tool, prompt=analysis_prompt)
>>> inputs = {"input_text": "Great product, highly recommend!"}
>>> result = executor.execute_plan_step(plan, inputs)
>>>
>>> if result["status"] == "success_live_mcp":
... print(f"Live analysis result: {result['tool_specific_output']}")
... elif result["status"] == "success_simulation":
... print(f"Simulated result: {result['tool_specific_output']}")
... else:
... print(f"Error: {result['message']}")
... for suggestion in result.get("error_information", {}).get("recovery_suggestions", []):
... print(f" - {suggestion}")
"""
logger.info("Executor: Starting execution of tool '%s'", plan.tool.name)
# Strategy 1: Attempt live MCP execution for remote tools
if plan.tool.execution_type == "remote_mcp_gradio":
logger.info("Executor: Attempting live MCP execution for '%s'", plan.tool.name)
live_result = self._execute_remote_mcp(plan, inputs)
# Success case: Return live execution results
if live_result["status"].startswith("success_"):
logger.info("Executor: Live MCP execution successful for '%s'", plan.tool.name)
return live_result
# API failure case: Fall back to simulation with context
api_failure_statuses = {
"error_live_mcp_gradio_api",
"error_gradio_api_max_retries",
"error_live_mcp_gradio_api_unexpected"
}
if live_result["status"] in api_failure_statuses:
logger.warning(
"Executor: Live MCP failed for '%s' with %s, falling back to simulation",
plan.tool.name, live_result['status']
)
return self._execute_simulation(plan, inputs, fallback_reason="mcp_api_failure")
# Network/infrastructure failure case: Return detailed error for user action
logger.error("Executor: Live MCP failed for '%s' with %s", plan.tool.name, live_result['status'])
return live_result
# Strategy 2: Handle unknown execution types gracefully
known_execution_types = {"remote_mcp_gradio", "local", "simulation", "stub"}
if plan.tool.execution_type and plan.tool.execution_type not in known_execution_types:
logger.warning(
"Executor: Unknown execution type '%s' for tool '%s', falling back to simulation",
plan.tool.execution_type, plan.tool.name
)
return self._execute_simulation(
plan,
inputs,
fallback_reason="unknown_execution_type",
execution_type=plan.tool.execution_type
)
# Strategy 3: Direct simulation for non-remote tools
logger.info("Executor: Using simulation for non-remote tool '%s'", plan.tool.name)
return self._execute_simulation(plan, inputs, fallback_reason="non_remote_tool")
def _execute_remote_mcp(
self, plan: PlannedStep, inputs: dict[str, str]
) -> dict[str, Any]:
"""Execute a planned step via HTTP call to live MCP server with retry logic.
Args:
plan: The PlannedStep with remote MCP tool
inputs: Dictionary of input values
Returns:
Dictionary containing real execution results
"""
tool = plan.tool
mcp_endpoint_url = tool.mcp_endpoint_url or tool.invocation_command_stub
logger.info(f"Executor: Making LIVE MCP call to {mcp_endpoint_url}")
# For MCP SSE endpoints, make direct SSE call
if "/mcp/sse" in mcp_endpoint_url:
logger.info("Executor: MCP SSE endpoint detected, making direct SSE call")
return self._execute_mcp_sse(plan, inputs)
# Try the request with retry logic
for attempt in range(self.max_retries + 1):
try:
# Construct MCP payload
mcp_payload = self._construct_mcp_payload(plan, inputs)
logger.info(f"Executor: MCP payload (attempt {attempt + 1}): {mcp_payload}")
# Make HTTP request
response = self.http_session.post(
mcp_endpoint_url,
json=mcp_payload,
timeout=tool.timeout_seconds
)
# Handle HTTP errors
response.raise_for_status()
# Parse response
response_data = response.json()
tool_output = self._parse_mcp_response(response_data, tool.name)
logger.info(f"Executor: Successfully received response from {tool.name}")
return {
"status": "success_live_mcp",
"tool_id_used": tool.tool_id,
"tool_name_used": tool.name,
"prompt_id_used": plan.prompt.prompt_id,
"prompt_name_used": plan.prompt.name,
"message": f"โ
Successfully executed live MCP tool '{tool.name}'",
"inputs_sent": mcp_payload["data"],
"tool_specific_output": tool_output,
"execution_mode": "live_mcp",
"mcp_endpoint": mcp_endpoint_url,
"attempts_made": attempt + 1
}
except requests.exceptions.HTTPError as http_err:
status_code = http_err.response.status_code
response_text = http_err.response.text[:500]
if attempt < self.max_retries and status_code in [500, 502, 503, 504]:
logger.warning(
f"HTTP Error {status_code} on attempt {attempt + 1}/{self.max_retries + 1}. "
f"Retrying in {self.retry_delay}s..."
)
time.sleep(self.retry_delay)
continue
# Final attempt failed or non-retryable error
error_category = self._categorize_http_error(status_code)
recovery_suggestions = self._get_http_error_suggestions(status_code, tool.name)
error_message = f"HTTP Error {status_code} calling MCP server {mcp_endpoint_url}"
if status_code == 503:
error_message += " - Service temporarily unavailable"
elif status_code == 429:
error_message += " - Rate limit exceeded"
elif status_code >= 500:
error_message += " - Server error"
elif status_code >= 400:
error_message += " - Client error"
logger.error(f"{error_message}: {response_text}")
return self._format_enhanced_error_response(
"error_live_mcp_http",
error_message,
plan,
inputs,
error_category=error_category,
recovery_suggestions=recovery_suggestions,
error_details={
"status_code": status_code,
"response_text": response_text,
"endpoint": mcp_endpoint_url,
"attempts_made": attempt + 1
}
)
except requests.exceptions.Timeout:
if attempt < self.max_retries:
logger.warning(
f"Timeout on attempt {attempt + 1}/{self.max_retries + 1}. "
f"Retrying in {self.retry_delay}s..."
)
time.sleep(self.retry_delay)
continue
error_message = f"Request timeout after {tool.timeout_seconds}s calling {mcp_endpoint_url}"
logger.error(error_message)
return self._format_enhanced_error_response(
"error_live_mcp_timeout",
error_message,
plan,
inputs,
error_category="network",
recovery_suggestions=[
"Try again - the service may be temporarily slow",
"Reduce the complexity or size of your input",
"Check if the MCP server is responding at other times",
"Contact the tool provider if timeouts persist"
],
error_details={
"timeout_seconds": tool.timeout_seconds,
"endpoint": mcp_endpoint_url,
"attempts_made": attempt + 1
}
)
except requests.exceptions.ConnectionError as conn_err:
if attempt < self.max_retries:
logger.warning(
f"Connection error on attempt {attempt + 1}/{self.max_retries + 1}. "
f"Retrying in {self.retry_delay}s..."
)
time.sleep(self.retry_delay)
continue
error_message = f"Connection failed to MCP server {mcp_endpoint_url}: {conn_err}"
logger.error(error_message)
return self._format_enhanced_error_response(
"error_live_mcp_connection",
error_message,
plan,
inputs,
error_category="network",
recovery_suggestions=[
"Check your internet connection",
"Verify the MCP server URL is correct",
"Try again later - the server may be temporarily down",
"Contact the tool provider if the issue persists"
],
error_details={
"endpoint": mcp_endpoint_url,
"connection_error": str(conn_err),
"attempts_made": attempt + 1
}
)
except requests.exceptions.RequestException as req_err:
error_message = f"Network error calling MCP server {mcp_endpoint_url}: {req_err}"
logger.error(error_message)
return self._format_enhanced_error_response(
"error_live_mcp_network",
error_message,
plan,
inputs,
error_category="network",
recovery_suggestions=[
"Check your network connection",
"Try again in a few moments",
"Verify the MCP server is accessible",
"Contact support if network issues persist"
],
error_details={
"endpoint": mcp_endpoint_url,
"network_error": str(req_err),
"attempts_made": attempt + 1
}
)
except (json.JSONDecodeError, KeyError, IndexError, TypeError) as parse_err:
error_message = (
f"Invalid response format from MCP server {mcp_endpoint_url}: {parse_err}"
)
logger.error(error_message)
# Get response text for debugging
response_text = ""
if "response" in locals():
try:
response_text = str(response.text)[:200]
except (AttributeError, TypeError):
response_text = str(response)[:200] if hasattr(response, "__str__") else "Mock response"
return self._format_enhanced_error_response(
"error_mcp_response_parsing",
error_message,
plan,
inputs,
error_category="data",
recovery_suggestions=[
"The MCP server returned an unexpected response format",
"Try again - this may be a temporary server issue",
"Contact the tool provider about response format issues",
"Verify the tool is configured correctly"
],
error_details={
"parse_error": str(parse_err),
"response_preview": response_text,
"endpoint": mcp_endpoint_url,
"attempts_made": attempt + 1
}
)
# This should never be reached due to the exception handling above
return self._format_enhanced_error_response(
"error_unexpected",
"Unexpected error in MCP execution",
plan,
inputs,
error_category="system",
recovery_suggestions=["Try again or contact support"]
)
def _execute_gradio_api(
self, plan: PlannedStep, inputs: dict[str, str]
) -> dict[str, Any]:
"""Execute a planned step via Gradio API instead of SSE MCP endpoint.
This is an alternative transport method for MCP tools that use SSE endpoints
which may not be compatible with direct HTTP calls.
Args:
plan: The PlannedStep with remote MCP tool
inputs: Dictionary of input values
Returns:
Dictionary containing real execution results
"""
tool = plan.tool
mcp_endpoint_url = tool.mcp_endpoint_url or tool.invocation_command_stub
# Convert SSE endpoint to Gradio API endpoint
gradio_api_url = mcp_endpoint_url.replace("/gradio_api/mcp/sse", "/gradio_api/call/predict")
logger.info(f"Executor: Using Gradio API transport to {gradio_api_url}")
for attempt in range(self.max_retries + 1):
try:
# Construct Gradio API payload
mcp_data_payload_list = []
param_order = (
plan.tool.input_parameter_order
if plan.tool.input_parameter_order
else plan.prompt.input_variables
)
if param_order:
for var_name in param_order:
value = inputs.get(var_name, "")
# Convert numeric parameters to integers for Gradio compatibility
if var_name in ["max_length", "min_length", "max_len", "min_len"] and value:
try:
value = int(value)
except (ValueError, TypeError):
logger.warning(f"Could not convert {var_name}='{value}' to int, using default")
value = 150 if "max" in var_name else 30
mcp_data_payload_list.append(value)
gradio_payload = {
"data": mcp_data_payload_list,
"fn_index": 0 # Assuming first function
}
logger.info(f"Executor: Gradio API payload (attempt {attempt + 1}): {gradio_payload}")
# Step 1: Submit the job
response = self.http_session.post(
gradio_api_url,
json=gradio_payload,
timeout=tool.timeout_seconds
)
response.raise_for_status()
job_data = response.json()
if "event_id" not in job_data:
raise ValueError(f"No event_id in Gradio API response: {job_data}")
event_id = job_data["event_id"]
logger.info(f"Executor: Got event_id {event_id}, polling for results...")
# Step 2: Poll for results
result_url = f"{gradio_api_url}/{event_id}"
max_polls = 30 # Maximum number of polling attempts
poll_interval = 1 # seconds between polls
for poll_attempt in range(max_polls):
time.sleep(poll_interval)
result_response = self.http_session.get(
result_url,
timeout=tool.timeout_seconds
)
result_response.raise_for_status()
result_text = result_response.text.strip()
if result_text.startswith("event: complete"):
# Parse the SSE-style response
lines = result_text.split("\n")
data_line = None
for line in lines:
if line.startswith("data: "):
data_line = line[6:] # Remove "data: " prefix
break
if data_line:
try:
result_data = json.loads(data_line)
if isinstance(result_data, list) and len(result_data) > 0:
tool_output = result_data[0]
logger.info(f"Executor: Successfully received response from {tool.name}")
return {
"status": "success_live_mcp",
"tool_id_used": tool.tool_id,
"tool_name_used": tool.name,
"prompt_id_used": plan.prompt.prompt_id,
"prompt_name_used": plan.prompt.name,
"message": f"โ
Successfully executed live MCP tool '{tool.name}' via Gradio API",
"inputs_sent": mcp_data_payload_list,
"tool_specific_output": str(tool_output),
"execution_mode": "live_mcp",
"mcp_endpoint": mcp_endpoint_url,
"attempts_made": attempt + 1,
"transport_method": "gradio_api"
}
raise ValueError(f"Empty or invalid result data: {result_data}")
except json.JSONDecodeError as e:
raise ValueError(f"Could not parse result JSON: {data_line}") from e
else:
raise ValueError(f"No data line found in SSE response: {result_text}")
elif result_text.startswith("event: error"):
# Handle error event
lines = result_text.split("\n")
error_msg = "Unknown error"
for line in lines:
if line.startswith("data: "):
error_msg = line[6:]
break
raise RuntimeError(f"Gradio API error: {error_msg}")
# If we get here, polling timed out
raise TimeoutError(f"Polling timeout after {max_polls * poll_interval} seconds")
except (requests.exceptions.HTTPError, RuntimeError, ValueError, TimeoutError) as e:
if attempt < self.max_retries and isinstance(e, (requests.exceptions.HTTPError, TimeoutError)):
logger.warning(
f"Error on attempt {attempt + 1}/{self.max_retries + 1}: {e}. "
f"Retrying in {self.retry_delay}s..."
)
time.sleep(self.retry_delay)
continue
# Final attempt failed or non-retryable error
error_category = "server_error" if isinstance(e, (RuntimeError, TimeoutError)) else "network"
error_message = f"Gradio API error calling {gradio_api_url}: {e}"
logger.error(error_message)
return self._format_enhanced_error_response(
"error_live_mcp_gradio_api",
error_message,
plan,
inputs,
error_category=error_category,
recovery_suggestions=[
"Try again - the service may be temporarily slow",
"Check if the Gradio server is responding correctly",
"Verify the tool configuration",
"Contact the tool provider if issues persist"
],
error_details={
"endpoint": gradio_api_url,
"original_endpoint": mcp_endpoint_url,
"error": str(e),
"attempts_made": attempt + 1,
"transport_method": "gradio_api"
}
)
except Exception as e:
error_message = f"Unexpected error calling Gradio API {gradio_api_url}: {e}"
logger.error(error_message)
return self._format_enhanced_error_response(
"error_live_mcp_gradio_api_unexpected",
error_message,
plan,
inputs,
error_category="system",
recovery_suggestions=[
"Try again",
"Check the system logs for more details",
"Contact support if the issue persists"
],
error_details={
"endpoint": gradio_api_url,
"error": str(e),
"attempts_made": attempt + 1,
"transport_method": "gradio_api"
}
)
return self._format_enhanced_error_response(
"error_gradio_api_max_retries",
f"Maximum retries exceeded for Gradio API {gradio_api_url}",
plan,
inputs,
error_category="network",
recovery_suggestions=["Try again later", "Contact support"]
)
def _execute_mcp_sse(
self, plan: PlannedStep, inputs: dict[str, str]
) -> dict[str, Any]:
"""Execute a planned step via MCP SSE endpoint.
Args:
plan: The PlannedStep with remote MCP tool
inputs: Dictionary of input values
Returns:
Dictionary containing real execution results
"""
tool = plan.tool
mcp_endpoint_url = tool.mcp_endpoint_url or tool.invocation_command_stub
logger.info(f"Executor: Making MCP SSE call to {mcp_endpoint_url}")
for attempt in range(self.max_retries + 1):
try:
# Construct MCP payload
mcp_data_payload_list = []
param_order = (
plan.tool.input_parameter_order
if plan.tool.input_parameter_order
else plan.prompt.input_variables
)
if param_order:
for var_name in param_order:
value = inputs.get(var_name, "")
# Convert numeric parameters to integers for compatibility
if var_name in ["max_length", "min_length", "max_len", "min_len"] and value:
try:
value = int(value)
except (ValueError, TypeError):
logger.warning(f"Could not convert {var_name}='{value}' to int, using default")
value = 150 if "max" in var_name else 30
mcp_data_payload_list.append(value)
mcp_payload = {"data": mcp_data_payload_list}
logger.info(f"Executor: MCP SSE payload (attempt {attempt + 1}): {mcp_payload}")
# Make POST request to SSE endpoint
response = self.http_session.post(
mcp_endpoint_url,
json=mcp_payload,
timeout=tool.timeout_seconds,
stream=True # Enable streaming for SSE
)
response.raise_for_status()
# Parse SSE response
response_text = response.text.strip()
logger.info(f"Executor: SSE response: {response_text[:200]}...")
# Handle different SSE response formats
if response_text.startswith("event:"):
# Parse SSE format
lines = response_text.split("\n")
data_line = None
for line in lines:
if line.startswith("data: "):
data_line = line[6:] # Remove "data: " prefix
break
if data_line:
try:
result_data = json.loads(data_line)
if isinstance(result_data, list) and len(result_data) > 0:
tool_output = result_data[0]
else:
tool_output = result_data
except json.JSONDecodeError:
tool_output = data_line
else:
raise ValueError(f"No data found in SSE response: {response_text}")
else:
# Try parsing as regular JSON
try:
result_data = response.json()
if "data" in result_data and isinstance(result_data["data"], list):
tool_output = result_data["data"][0] if result_data["data"] else result_data
else:
tool_output = result_data
except json.JSONDecodeError:
# Fallback to raw text
tool_output = response_text
logger.info(f"Executor: Successfully received SSE response from {tool.name}")
return {
"status": "success_live_mcp",
"tool_id_used": tool.tool_id,
"tool_name_used": tool.name,
"prompt_id_used": plan.prompt.prompt_id,
"prompt_name_used": plan.prompt.name,
"message": f"โ
Successfully executed live MCP tool '{tool.name}' via SSE",
"inputs_sent": mcp_data_payload_list,
"tool_specific_output": str(tool_output),
"execution_mode": "live_mcp",
"mcp_endpoint": mcp_endpoint_url,
"attempts_made": attempt + 1,
"transport_method": "mcp_sse"
}
except (requests.exceptions.HTTPError, RuntimeError, ValueError, TimeoutError) as e:
if attempt < self.max_retries and isinstance(e, (requests.exceptions.HTTPError, TimeoutError)):
logger.warning(
f"Error on attempt {attempt + 1}/{self.max_retries + 1}: {e}. "
f"Retrying in {self.retry_delay}s..."
)
time.sleep(self.retry_delay)
continue
# Final attempt failed or non-retryable error
error_category = "server_error" if isinstance(e, (RuntimeError, TimeoutError)) else "network"
error_message = f"MCP SSE error calling {mcp_endpoint_url}: {e}"
logger.error(error_message)
return self._format_enhanced_error_response(
"error_live_mcp_sse",
error_message,
plan,
inputs,
error_category=error_category,
recovery_suggestions=[
"Try again - the MCP service may be temporarily slow",
"Check if the MCP server is responding correctly",
"Verify the tool configuration",
"Contact the tool provider if issues persist"
],
error_details={
"endpoint": mcp_endpoint_url,
"error": str(e),
"attempts_made": attempt + 1,
"transport_method": "mcp_sse"
}
)
except Exception as e:
error_message = f"Unexpected error calling MCP SSE {mcp_endpoint_url}: {e}"
logger.error(error_message)
return self._format_enhanced_error_response(
"error_live_mcp_sse_unexpected",
error_message,
plan,
inputs,
error_category="system",
recovery_suggestions=[
"Try again",
"Check the system logs for more details",
"Contact support if the issue persists"
],
error_details={
"endpoint": mcp_endpoint_url,
"error": str(e),
"attempts_made": attempt + 1,
"transport_method": "mcp_sse"
}
)
return self._format_enhanced_error_response(
"error_mcp_sse_max_retries",
f"Maximum retries exceeded for MCP SSE {mcp_endpoint_url}",
plan,
inputs,
error_category="network",
recovery_suggestions=["Try again later", "Contact support"]
)
def _categorize_http_error(self, status_code: int) -> str:
"""Categorize HTTP errors for better user understanding."""
if status_code == 429:
return "rate_limit"
if status_code in [500, 502, 503, 504]:
return "server_error"
if status_code in [401, 403]:
return "authentication"
if status_code in [400, 422]:
return "input_validation"
if status_code == 404:
return "not_found"
return "http_error"
def _get_http_error_suggestions(self, status_code: int, tool_name: str) -> list[str]:
"""Get recovery suggestions based on HTTP status code."""
if status_code == 429:
return [
"Wait a few minutes before trying again",
"The tool service has rate limits to prevent overuse",
"Try again later when usage is lower"
]
if status_code in [500, 502, 503, 504]:
return [
"The tool service is experiencing technical difficulties",
"Try again in a few minutes",
f"Contact the {tool_name} service provider if issues persist",
"Check the service status page if available"
]
if status_code in [401, 403]:
return [
"The tool service requires authentication",
"Check if the tool configuration includes proper credentials",
"Contact the system administrator for access issues"
]
if status_code in [400, 422]:
return [
"The input format may not be compatible with this tool",
"Try simplifying or reformatting your input",
"Check the tool documentation for input requirements",
"Verify all required fields are provided"
]
if status_code == 404:
return [
"The tool endpoint could not be found",
"Verify the tool URL is correct",
"The tool service may have been moved or disabled",
"Contact the tool provider for updated endpoint information"
]
return [
"An unexpected HTTP error occurred",
"Try again in a few moments",
"Contact support if the issue persists"
]
def _format_enhanced_error_response(
self,
status: str,
message: str,
plan: PlannedStep,
inputs: dict[str, str],
error_category: str = "general",
recovery_suggestions: list[str] | None = None,
error_details: dict[str, Any] | None = None
) -> dict[str, Any]:
"""Format an enhanced error response with detailed information and recovery suggestions."""
return {
"status": status,
"tool_id_used": plan.tool.tool_id,
"tool_name_used": plan.tool.name,
"prompt_id_used": plan.prompt.prompt_id,
"prompt_name_used": plan.prompt.name,
"message": f"โ {message}",
"inputs_received": inputs,
"tool_specific_output": None,
"execution_mode": "live_mcp_failed",
"error_information": {
"error_category": error_category,
"error_type": status,
"error_message": message,
"recovery_suggestions": recovery_suggestions or [
"Try again in a few moments",
"Check your input for any issues",
"Contact support if the problem persists"
],
"retry_recommended": error_category in ["network", "server_error", "rate_limit"],
"user_action_required": error_category in ["input_validation", "authentication"],
"timestamp": time.time()
},
"error_details": error_details or {}
}
def _construct_mcp_payload(
self, plan: PlannedStep, inputs: dict[str, str]
) -> dict[str, Any]:
"""Construct MCP-compliant payload from inputs.
Args:
plan: The PlannedStep containing tool and prompt info
inputs: Dictionary of input values
Returns:
Dictionary with 'data' key containing ordered list of arguments
"""
mcp_data_payload_list: list[Any] = []
# Use input_parameter_order if specified, otherwise use prompt input_variables
param_order = (
plan.tool.input_parameter_order
if plan.tool.input_parameter_order
else plan.prompt.input_variables
)
if param_order:
for var_name in param_order:
value = inputs.get(var_name)
# Convert numeric parameters to integers for Gradio compatibility
if var_name in ["max_length", "min_length", "max_len", "min_len"] and value:
try:
value = int(value)
except (ValueError, TypeError):
logger.warning(f"Could not convert {var_name}='{value}' to int, using default")
value = 150 if "max" in var_name else 30
mcp_data_payload_list.append(value)
else:
logger.warning(
f"No parameter order defined for tool '{plan.tool.name}' "
f"or prompt '{plan.prompt.name}'. Sending empty data list."
)
return {"data": mcp_data_payload_list}
def _parse_mcp_response(
self, response_data: dict[str, Any], tool_name: str
) -> str:
"""Parse MCP server response to extract tool output.
Args:
response_data: JSON response from MCP server
tool_name: Name of the tool for error messages
Returns:
String containing the tool output
Raises:
KeyError: If response format is invalid
IndexError: If data array is empty
"""
if "data" not in response_data:
raise KeyError(f"No 'data' field in MCP response from {tool_name}")
data_array = response_data["data"]
if not data_array:
raise IndexError(f"Empty 'data' array in MCP response from {tool_name}")
# Get the first element as tool output
tool_output = data_array[0]
# Convert to string if needed
if isinstance(tool_output, (dict, list)):
return json.dumps(tool_output, indent=2)
return str(tool_output)
def _execute_simulation(
self, plan: PlannedStep, inputs: dict[str, str], fallback_reason: str = "direct_simulation", execution_type: str | None = None
) -> dict[str, Any]:
"""Execute a planned step via simulation (fallback method).
This method provides the same simulation logic as the original
StubExecutorAgent for tools that don't have live MCP endpoints.
Args:
plan: The PlannedStep to simulate
inputs: Dictionary of input values
fallback_reason: Reason for falling back to simulation
execution_type: Original execution type of the tool
Returns:
Dictionary containing simulated execution results
"""
logger.info(f"Executor: Falling back to simulation for tool '{plan.tool.name}'")
# Check if we should simulate an error
error_scenario = self._should_simulate_error(plan, inputs)
if error_scenario:
return error_scenario
# Generate input-aware mock output based on tool type
mock_output = self._generate_tool_specific_output(plan, inputs)
# Build metadata
metadata = {
"fallback_reason": fallback_reason,
"simulation_version": "MVP4_Sprint2_Enhanced",
"timestamp": time.time()
}
# Include original execution type if provided
if execution_type:
metadata["execution_type"] = execution_type
return {
"status": "simulated_success",
"tool_id_used": plan.tool.tool_id,
"tool_name_used": plan.tool.name,
"prompt_id_used": plan.prompt.prompt_id,
"prompt_name_used": plan.prompt.name,
"message": f"Tool '{plan.tool.name}' execution SIMULATED successfully",
"inputs_received": inputs,
"tool_specific_output": mock_output,
"execution_mode": "simulated",
"metadata": metadata
}
def _should_simulate_error(
self, plan: PlannedStep, inputs: dict[str, str]
) -> dict[str, Any] | None:
"""Check if an error should be simulated based on inputs or random chance.
Args:
plan: The PlannedStep being executed
inputs: Dictionary of input values
Returns:
Error result dictionary if error should be simulated, None otherwise
"""
# Random error simulation (10% chance for testing robustness)
if random.random() < 0.1:
error_types = [
"timeout",
"rate_limit",
"invalid_input",
"service_unavailable",
"authentication_failed",
]
error_type = random.choice(error_types)
return {
"status": f"simulated_error_{error_type}",
"tool_id_used": plan.tool.tool_id,
"tool_name_used": plan.tool.name,
"prompt_id_used": plan.prompt.prompt_id,
"prompt_name_used": plan.prompt.name,
"message": f"Simulated {error_type.replace('_', ' ')} error for tool '{plan.tool.name}'",
"inputs_received": inputs,
"tool_specific_output": None,
"execution_mode": "simulated_error",
"error_details": {
"error_type": error_type,
"simulated": True
}
}
# Simulate input validation errors
for var_name in plan.prompt.input_variables:
if var_name not in inputs or not inputs[var_name].strip():
return {
"status": "simulated_error_missing_input",
"tool_id_used": plan.tool.tool_id,
"tool_name_used": plan.tool.name,
"prompt_id_used": plan.prompt.prompt_id,
"prompt_name_used": plan.prompt.name,
"message": f"Missing required input '{var_name}' for tool '{plan.tool.name}'",
"inputs_received": inputs,
"tool_specific_output": None,
"execution_mode": "simulated_error",
"error_details": {
"missing_input": var_name,
"simulated": True
}
}
return None
def _generate_tool_specific_output(
self, plan: PlannedStep, inputs: dict[str, str]
) -> str:
"""Generate realistic mock output based on the tool type and inputs.
Args:
plan: The PlannedStep containing tool information
inputs: Dictionary of input values
Returns:
String containing tool-specific mock output
"""
tool_id = plan.tool.tool_id.lower()
tool_name = plan.tool.name.lower()
# Sentiment Analysis Tools
if "sentiment" in tool_id or "sentiment" in tool_name:
# Try prompt variables first, then any text-containing input
source_field = None
text_input = None
# First try prompt variables
for var in plan.prompt.input_variables:
if var in inputs:
text_input = inputs[var]
source_field = var
break
# If not found, try any text-containing input
if text_input is None:
for key in inputs:
if any(word in key.lower() for word in ["text", "content", "message", "feedback", "data"]):
text_input = inputs[key]
source_field = key
break
# Fallback
if text_input is None:
text_input = "sample text"
source_field = "default"
# Handle empty input
if not text_input.strip():
supported_fields = ", ".join(plan.prompt.input_variables)
return f"""## โ ๏ธ Sentiment Analysis Error (Simulated)
**No text content provided for sentiment analysis**
โ ๏ธ **Input Analysis:**
- No valid text content found in the provided inputs
- **Supported input fields:** {supported_fields}
**Recommendation: Please provide text content to analyze**
*This is simulated output for demonstration purposes.*"""
# Analyze text for sentiment
text_lower = text_input.lower()
positive_keywords = ["amazing", "fantastic", "love", "excellent", "great", "wonderful", "brilliant", "recommend"]
negative_keywords = ["terrible", "awful", "hate", "worst", "horrible", "bad", "disappointing"]
positive_indicators = len([word for word in positive_keywords if word in text_lower])
negative_indicators = len([word for word in negative_keywords if word in text_lower])
if positive_indicators > negative_indicators and positive_indicators > 0:
chosen_sentiment = "Positive"
emotion_details = "Joy/Satisfaction: High levels detected"
confidence = round(random.uniform(0.8, 0.95), 2)
elif negative_indicators > 0:
chosen_sentiment = "Negative"
emotion_details = "Frustration: Significant negative sentiment identified"
confidence = round(random.uniform(0.7, 0.9), 2)
else:
chosen_sentiment = "Neutral"
emotion_details = "Neutral: Balanced or objective tone detected"
confidence = round(random.uniform(0.6, 0.85), 2)
# Build indicator sections separately to avoid complex f-string expressions
indicator_sections = ""
if chosen_sentiment == "Positive" and positive_indicators > 0:
indicator_sections += f"**Positive Indicators**: {positive_indicators} detected"
elif chosen_sentiment == "Negative" and negative_indicators > 0:
indicator_sections += f"**Negative Indicators**: {negative_indicators} detected"
elif chosen_sentiment == "Neutral":
indicator_sections += "**Neutral Indicators**: Balanced tone detected"
return f"""## ๐ Sentiment Analysis Results (Simulated)
**Overall Sentiment Classification:** {chosen_sentiment}
**Primary**: {chosen_sentiment}
**Text Analyzed:** "{text_input[:100]}..."
**{emotion_details}**
**Source Field Analysis:**
- Input field analyzed: **{source_field}**
- Content classification: Text-based sentiment analysis
**Text Length**: {len(text_input)} characters
**Confidence Metrics:**
- Primary sentiment confidence: {confidence:.0%}
- Analysis reliability: High
**Analysis Confidence**: {confidence:.0%} based on content analysis
{indicator_sections}
**Detailed Scores:**
- ๐ Positive: {random.randint(10, 80)}%
- ๐ Neutral: {random.randint(10, 40)}%
- ๐ Negative: {random.randint(5, 60)}%
**Generated by Sentiment Analyzer Tool**
*This is simulated output for demonstration purposes.*"""
# Text Summarization Tools
if "summar" in tool_id or "summar" in tool_name:
# Try prompt variables first, then any text-containing input
text_input = next(
(inputs[var] for var in plan.prompt.input_variables if var in inputs),
next(
(inputs[key] for key in inputs if any(word in key.lower() for word in ["text", "content", "document", "data"])),
"sample document content"
)
)
# Handle empty input
if not text_input.strip():
supported_fields = ", ".join(plan.prompt.input_variables)
return f"""## โ ๏ธ Text Summarization Error (Simulated)
**No text content provided for summarization**
โ ๏ธ **Input Analysis:**
- No valid text content found in the provided inputs
- **Supported input fields:** {supported_fields}
**Recommendation: Please provide text content to summarize**
*This is simulated output for demonstration purposes.*"""
# Detect content type
text_lower = text_input.lower()
if any(keyword in text_lower for keyword in ["function", "class", "variable", "code", "implement", "programming", "def ", "return", "import"]):
content_type = "technical content"
classification = "Technical classification"
key_topics = "code structure, functionality patterns"
elif any(keyword in text_lower for keyword in ["business", "market", "customer", "sales", "growth", "company", "revenue", "strategy"]):
content_type = "business content"
classification = "Business classification"
key_topics = "market dynamics, customer insights"
else:
content_type = "general content"
classification = "General classification"
key_topics = "main concepts, key information"
max_length = inputs.get("max_length", "150")
return f"""## ๐ Text Summarization Complete (Simulated)
**Document Metrics:**
- Original Length: {len(text_input)} characters
- Target Length: {max_length} words
- Compression Ratio: {random.randint(60, 85)}%
- Content Type: {content_type}
**{classification}:**
Detected {content_type} requiring specialized analysis approach.
**Executive Summary:**
This is a simulated summary of the provided text. The key points have been identified and condensed into a shorter format while preserving the essential information and context.
**Key Points:**
- {key_topics}
- Important details preservation
- Context maintenance
**Generated by Text Summarizer Tool**
*This is simulated output for demonstration purposes.*"""
# Image Caption Generation Tools
if "image" in tool_id or "caption" in tool_id or "image" in tool_name:
# Try prompt variables first, then any image-containing input
image_input = next(
(inputs[var] for var in plan.prompt.input_variables if var in inputs),
next(
(inputs[key] for key in inputs if any(word in key.lower() for word in ["image", "photo", "picture", "file", "path", "url"])),
"sample_image.jpg"
)
)
# Handle empty input
if not image_input.strip():
supported_fields = ", ".join(plan.prompt.input_variables)
return f"""## โ ๏ธ Image Caption Error (Simulated)
**No image source provided for caption generation**
โ ๏ธ **Input Analysis:**
- No valid image source found in the provided inputs
- **Supported input fields:** {supported_fields}
**Recommendation: Please provide an image source to caption**
*This is simulated output for demonstration purposes.*"""
# Check for additional context information
context_info = None
context_provided = False
for key in inputs:
if key.lower() == "context" and inputs[key].strip():
context_info = inputs[key]
context_provided = True
break
# Analyze image path for context
image_lower = image_input.lower()
if any(keyword in image_lower for keyword in ["workspace", "office", "desk", "professional"]):
primary_caption = "A professional workspace environment featuring office equipment and organizational setup"
scene_type = "Indoor workspace/office environment"
alt_caption = "Professional desk setup in modern office workspace"
context_description = "Professional setting with clear workspace organization"
objects_detected = random.randint(8, 12) # More objects in workspace
elif any(keyword in image_lower for keyword in ["nature", "outdoor", "landscape", "mountain"]):
primary_caption = "A natural outdoor scene showcasing environmental elements"
scene_type = "Outdoor natural environment"
alt_caption = "Scenic natural landscape with environmental features"
context_description = "Natural outdoor setting with scenic elements"
objects_detected = random.randint(3, 6)
else:
primary_caption = "An interesting perspective capturing the main subject matter"
scene_type = "General"
alt_caption = "A clear image depicting the primary focus with good lighting"
context_description = "Professional setting with clear visibility"
objects_detected = random.randint(3, 8)
confidence = random.randint(85, 98)
context_analysis_section = ""
if context_provided:
context_analysis_section = f"""**Context Analysis:**
- **Context Provided**: Yes
- additional context: {context_info}
- Context integration: {context_info}
"""
return f"""## ๐ผ๏ธ Image Caption Generation Results (Simulated)
**Image Source:** {image_input}
**Primary Caption:**
{primary_caption}
**Technical Analysis:**
- Objects detected: {objects_detected}
- Scene type: {scene_type}
- Image quality: High
**Confidence Level:** {confidence}%
{context_analysis_section}**Alternative Descriptions:**
- Secondary interpretation: {alt_caption}
- Contextual description: {context_description}
**Generated by Image Caption Generator Tool**
*This is simulated output for demonstration purposes.*"""
# Code Quality/Linting Tools
if "code" in tool_id or "lint" in tool_id or "quality" in tool_id:
# Try prompt variables first, then any code-containing input
code_input = next(
(inputs[var] for var in plan.prompt.input_variables if var in inputs),
next(
(inputs[key] for key in inputs if any(word in key.lower() for word in ["code", "script", "source", "file", "text", "data"])),
"sample code"
)
)
# Handle empty input
if not code_input.strip():
supported_fields = ", ".join(plan.prompt.input_variables)
return f"""## โ ๏ธ Code Quality Analysis Error (Simulated)
**No code content provided for analysis**
โ ๏ธ **Input Analysis:**
- No valid code content found in the provided inputs
- **Supported input fields:** {supported_fields}
**Recommendation: Please provide code content to analyze**
*This is simulated output for demonstration purposes.*"""
# Detect programming language
code_lower = code_input.lower()
detected_language = "General"
if any(keyword in code_lower for keyword in ["def ", "import ", "class ", "print(", "if __name__"]):
detected_language = "Python"
elif any(keyword in code_lower for keyword in ["function ", "var ", "const ", "console.log", "=>"]):
detected_language = "JavaScript"
elif any(keyword in code_lower for keyword in ["public class", "import java", "system.out"]):
detected_language = "Java"
elif any(keyword in code_lower for keyword in ["#include", "int main", "cout", "using namespace"]):
detected_language = "C++"
lines_count = len(code_input.split("\n"))
# Detect specific issues
issues_found = []
if "todo" in code_lower or "fixme" in code_lower:
issues_found.append("Todo/Fixme comments found")
if any(len(line) > 100 for line in code_input.split("\n")):
issues_found.append("Long lines detected")
issues_count = len(issues_found) if issues_found else random.randint(0, 3)
quality_score = random.randint(75, 95)
# Extract first non-empty line for preview (avoiding backslash in f-string)
code_lines = code_input.split("\n")
first_line = next((line.strip() for line in code_lines if line.strip()), "No code preview available")
return f"""## ๐ Code Quality Analysis Complete (Simulated)
**Language**: {detected_language}
**Lines Analyzed**: {lines_count}
**Overall Quality Score:** {quality_score}/100
**Quality Metrics:**
- Code Length: {len(code_input)} characters
- Issues Found: {issues_count}
- Compliance Level: {'High' if quality_score > 85 else 'Medium'}
**Code Preview:**
{first_line}
**Analysis Summary:**
{'โ
No major issues found!' if issues_count == 0 else f'โ ๏ธ {issues_count} potential improvements identified'}
{f"**Issues Found**: {issues_count}" if issues_count > 0 else ""}
{chr(10).join([f"- {issue}" for issue in issues_found]) if issues_found else ""}
**Recommendations:**
- Style compliance: {'โ
Good' if random.choice([True, False]) else 'โ ๏ธ Minor issues'}
- Security: {'โ
Secure' if random.choice([True, False]) else 'โ ๏ธ Review needed'}
- Performance: {'โ
Optimized' if random.choice([True, False]) else '๐ก Suggestions available'}
**Generated by Code Quality Linter Tool**
*This is simulated output for demonstration purposes.*"""
# Generic fallback for other tools
input_analysis = "\n".join([f"- **{k}**: {v}" for k, v in inputs.items() if v])
# Calculate processing complexity based on total input length
total_content_length = sum(len(str(v)) for v in inputs.values())
if total_content_length < 100:
complexity = "Simple"
elif total_content_length < 500:
complexity = "Medium"
else:
complexity = "Complex"
return f"""## ๐ ๏ธ Execution Results for {plan.tool.name} (Simulated)
**Successfully processed** the provided inputs using {plan.prompt.name}.
**Processing Complexity**: {complexity}
**Inputs Received**: {len(inputs)} parameter(s)
**Total Content Length**: {total_content_length} characters
**Input Analysis:**
{input_analysis}
**Generic Processing:**
The tool has been executed successfully with the provided inputs. This is a generic simulated response demonstrating that the tool would process your request and return relevant results.
**Processing Details:**
- Execution time: {random.randint(500, 2000)}ms
- Success rate: {random.randint(90, 99)}%
- Data processed: {len(str(inputs))} bytes
*This is simulated output for demonstration purposes.*"""
# Legacy StubExecutorAgent for backward compatibility
class StubExecutorAgent:
"""Legacy stub executor agent for backward compatibility."""
def __init__(self) -> None:
"""Initialize the StubExecutorAgent."""
logger.info("StubExecutorAgent initialized for MVP 3")
def simulate_execution(
self, plan: PlannedStep, inputs: dict[str, str]
) -> dict[str, Any]:
"""Simulate execution of a planned step.
Args:
plan: The PlannedStep to simulate
inputs: Dictionary of input values
Returns:
Dictionary containing simulated execution results with expected test structure
Raises:
ValueError: If plan or inputs are invalid
"""
if not isinstance(plan, PlannedStep):
raise ValueError("Plan must be a PlannedStep instance")
if not isinstance(inputs, dict):
raise ValueError("Inputs must be a dictionary")
logger.info(f"Simulating execution for tool '{plan.tool.name}' with prompt '{plan.prompt.name}'")
logger.info(f"Received inputs: {inputs}")
# Check for sophisticated error simulation based on input content
error_simulation = self._detect_error_simulation(plan, inputs)
if error_simulation:
return error_simulation
# Use the McpExecutorAgent's simulation method for mock output generation
mcp_executor = McpExecutorAgent()
mock_output = mcp_executor._generate_tool_specific_output(plan, inputs)
# Generate execution ID with timestamp and random component for uniqueness
execution_id = f"exec_{plan.tool.tool_id}_{int(time.time() * 1000)}_{random.randint(100, 999)}"
logger.info(f"Generated mock response for '{plan.tool.name}' with execution_id: {execution_id}")
return {
"status": "simulated_success",
"execution_id": execution_id,
"tool_information": {
"tool_id": plan.tool.tool_id,
"tool_name": plan.tool.name,
"tool_description": plan.tool.description
},
"prompt_information": {
"prompt_id": plan.prompt.prompt_id,
"prompt_name": plan.prompt.name,
"prompt_description": plan.prompt.description
},
"execution_details": {
"inputs_received": inputs,
"inputs_count": len(inputs),
"execution_time_ms": random.randint(800, 2500),
"complexity_level": plan.prompt.difficulty_level
},
"results": {
"message": f"Tool '{plan.tool.name}' execution SIMULATED successfully",
"mock_output": mock_output,
"confidence_score": round(random.uniform(0.75, 0.95), 2)
},
"metadata": {
"simulation_version": "MVP3_Sprint4",
"timestamp": time.time(),
"notes": "Simulated execution for testing and development purposes"
}
}
def _detect_error_simulation(self, plan: PlannedStep, inputs: dict[str, str]) -> dict[str, Any] | None:
"""Detect various error simulation triggers and return appropriate error responses.
Args:
plan: The PlannedStep being executed
inputs: Dictionary of input values
Returns:
Error response dictionary if error should be simulated, None otherwise
"""
# Combine all input text for analysis
all_input_text = " ".join(str(v) for v in inputs.values()).lower()
# Check for security violations (highest priority)
if "<script>" in all_input_text or "alert(" in all_input_text:
return self._create_error_response(
plan, inputs, "security_violation", "SEC_001", "high",
"Security Error",
"Security Violation Detected - Malicious script content detected in input",
["Remove script tags", "Sanitize input content", "Use safe content only"],
False, # No retry recommended for security violations
"Security violation: Script injection attempt detected"
)
# Check for input size limits
total_input_size = sum(len(str(v)) for v in inputs.values())
if total_input_size > 10000:
return self._create_error_response(
plan, inputs, "input_too_large", "VAL_001", "medium",
"Input Size Error",
f"Input Too Large - Input size {total_input_size} characters exceeds maximum limit of 10,000",
["Reduce input size", "Split into smaller chunks", "Summarize content"],
True,
f"Input size: {total_input_size} characters"
)
# Check for test scenario errors (more specific, check first)
if "test error scenario" in all_input_text:
return self._create_error_response(
plan, inputs, "test_scenario", "TST_ERR_001", "low",
"Test Error Scenario",
"Test scenario error simulation activated",
["Use production input", "Remove test keywords", "Verify request"],
True,
"Test scenario detected"
)
# Check for user-requested error simulation (more general)
if any(keyword in all_input_text for keyword in ["fail", "error", "should fail"]):
return self._create_error_response(
plan, inputs, "user_requested", "USR_REQ_001", "medium",
"User-Requested Error",
"User explicitly requested error simulation",
["Remove error keywords", "Use normal input", "Check request content"],
True,
f"Trigger keywords detected in: {all_input_text[:100]}"
)
# Check for file-related errors (image tools)
if "image" in plan.tool.name.lower() or "caption" in plan.tool.name.lower():
for key, value in inputs.items():
if any(field in key.lower() for field in ["file", "image", "path"]):
if "broken" in value.lower() or "corrupted" in value.lower():
return self._create_error_response(
plan, inputs, "corrupted_file", "FILE_001", "medium",
"File Processing Error",
"Corrupted File Detected",
["Use valid file", "Check file integrity", "Try different file"],
True,
f"Corrupted file: {value}"
)
if value.endswith((".txt", ".doc", ".pdf")) and not value.endswith((".jpg", ".png", ".gif", ".jpeg")):
return self._create_error_response(
plan, inputs, "wrong_file_type", "FILE_002", "medium",
"File Type Error",
"Unsupported File Type",
["Use image file format", "Convert to supported format", "Check file extension"],
True,
f"Unsupported file type: {value}"
)
# Random error simulation (10% chance, lowest priority)
if random.random() < 0.1:
error_types = ["network_timeout", "service_unavailable", "rate_limit_exceeded", "temporary_overload"]
error_type = random.choice(error_types)
return self._create_error_response(
plan, inputs, error_type, "RND_001", "low",
f"Random {error_type.replace('_', ' ').title()}",
f"Simulated {error_type.replace('_', ' ')} error for testing robustness",
["Retry request", "Wait and try again", "Check service status"],
True,
f"Random error simulation: {error_type}"
)
return None # No error simulation triggered
@staticmethod
def _create_error_response(
plan: PlannedStep,
inputs: dict[str, str],
error_type: str,
error_code: str,
severity: str,
error_title: str,
error_message: str,
suggested_fixes: list[str],
retry_recommended: bool,
error_details: str
) -> dict[str, Any]:
"""Create a standardized error response structure.
Args:
plan: The PlannedStep being executed
inputs: Dictionary of input values
error_type: Type of error (e.g., "user_requested", "security_violation")
error_code: Error code (e.g., "USR_REQ_001")
severity: Error severity ("low", "medium", "high")
error_title: Human-readable error title
error_message: Detailed error message
suggested_fixes: List of suggested fixes
retry_recommended: Whether retry is recommended
error_details: Additional error details
Returns:
Dictionary containing standardized error response
"""
execution_id = f"exec_{plan.tool.tool_id}_{int(time.time() * 1000)}_{random.randint(100, 999)}"
# Log the error
logger.warning(f"Simulated error triggered: {error_type} - {error_message}")
# Create error-specific mock output with different endings for different error types
if error_type == "user_requested":
error_status = "**Error Simulation Activated**"
else:
error_status = "**Error Simulation Active**"
mock_output = f"""## โ ๏ธ {error_title} (Simulated)
**{error_title}**
๐ซ **Error Details:**
- Error Type: {error_type.replace('_', ' ').title()}
- Error Code: {error_code}
- Severity: {severity.title()}
**Description:**
{error_message}
**Suggested Actions:**
{chr(10).join([f"- {fix}" for fix in suggested_fixes])}
{error_status}
*This is simulated output for demonstration purposes.*"""
return {
"status": "simulated_error",
"execution_id": execution_id,
"tool_information": {
"tool_id": plan.tool.tool_id,
"tool_name": plan.tool.name,
"tool_description": plan.tool.description
},
"prompt_information": {
"prompt_id": plan.prompt.prompt_id,
"prompt_name": plan.prompt.name,
"prompt_description": plan.prompt.description
},
"execution_details": {
"inputs_received": inputs,
"inputs_count": len(inputs),
"execution_time_ms": random.randint(100, 1000), # Shorter for errors
"complexity_level": plan.prompt.difficulty_level,
"error_occurred_at": random.randint(10, 80) # Percentage through execution
},
"error_information": {
"error_type": error_type,
"error_severity": severity,
"error_code": error_code,
"error_message": error_message,
"error_details": error_details,
"suggested_fixes": suggested_fixes,
"retry_recommended": retry_recommended
},
"results": {
"message": f"Simulated {error_type.replace('_', ' ')} error",
"mock_output": mock_output,
"confidence_score": 0.0
},
"metadata": {
"simulation_version": "MVP3_Sprint4",
"timestamp": time.time(),
"notes": "Simulated execution for testing and development purposes",
"error_simulation": error_type,
"trigger_info": error_details[:100] # Truncate to 100 chars
}
}
|