File size: 19,146 Bytes
1f2d50a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
---
title: AI Agent Architecture
description: Multi-agent system design and coordination patterns in KGraph-MCP
---
# AI Agent Architecture
Comprehensive documentation of KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.
## ๐ค Agent System Overview
KGraph-MCP employs a **Multi-Agent Orchestration Architecture** where specialized AI agents collaborate to understand user goals, discover appropriate tools, execute complex workflows, and continuously learn from interactions.
### **Core Agent Framework**
```mermaid
graph TB
subgraph "๐ง Agent Coordination Layer"
Controller[Agent Controller<br/>Coordination & Communication]
Scheduler[Task Scheduler<br/>Agent Workload Management]
Monitor[Agent Monitor<br/>Health & Performance]
end
subgraph "๐ฏ Specialized Agents"
subgraph "Planner Agent"
PA_Core[Core Planning Engine]
PA_NLP[Natural Language Processor]
PA_Goals[Goal Decomposition]
PA_Strategy[Strategy Formation]
end
subgraph "Selector Agent"
SA_Core[Core Selection Engine]
SA_Query[Knowledge Query]
SA_Match[Capability Matching]
SA_Rank[Tool Ranking]
end
subgraph "Executor Agent"
EA_Core[Core Execution Engine]
EA_Invoke[Tool Invocation]
EA_Monitor[Execution Monitoring]
EA_Coord[Multi-tool Coordination]
end
subgraph "Supervisor Agent"
SV_Core[Core Supervision Engine]
SV_Validate[Result Validation]
SV_Quality[Quality Assurance]
SV_Learn[Learning Engine]
end
end
subgraph "๐๏ธ Shared Resources"
Knowledge[Knowledge Graph]
Memory[Shared Memory]
Context[Execution Context]
Metrics[Performance Metrics]
end
Controller --> PA_Core
Controller --> SA_Core
Controller --> EA_Core
Controller --> SV_Core
Scheduler --> PA_Core
Scheduler --> SA_Core
Scheduler --> EA_Core
Scheduler --> SV_Core
Monitor --> Metrics
Metrics --> Knowledge
PA_Core --> SA_Core
SA_Core --> EA_Core
EA_Core --> SV_Core
SV_Core --> PA_Core
PA_Core --> Knowledge
SA_Core --> Knowledge
EA_Core --> Context
SV_Core --> Memory
style Controller fill:#e1f5fe
style PA_Core fill:#fff3e0
style SA_Core fill:#e8f5e8
style EA_Core fill:#f3e5f5
style SV_Core fill:#fce4ec
```
## ๐ฏ Agent Specializations & Responsibilities
### **1. Planner Agent - Strategic Intelligence**
```mermaid
flowchart TD
Input[User Input/Goal] --> Parse[Natural Language Parsing]
Parse --> Understand[Goal Understanding]
Understand --> Decompose[Task Decomposition]
Decompose --> Analyze[Dependency Analysis]
Analyze --> Prioritize[Priority Assignment]
Prioritize --> Sequence[Sequence Planning]
Sequence --> Resource[Resource Estimation]
Resource --> Risk[Risk Assessment]
Risk --> Optimize[Plan Optimization]
Optimize --> Validate{Plan Validation}
Validate -->|Valid| Execute[Send to Selector]
Validate -->|Invalid| Refine[Plan Refinement]
Refine --> Decompose
Execute --> Monitor[Monitor Execution]
Monitor --> Adapt[Plan Adaptation]
Adapt --> Learn[Update Planning Models]
subgraph "๐ง Planning Intelligence"
Understand
Decompose
Analyze
Optimize
end
subgraph "๐ Adaptive Learning"
Monitor
Adapt
Learn
end
style Input fill:#e3f2fd
style Understand fill:#e8f5e8
style Optimize fill:#f3e5f5
style Learn fill:#fce4ec
```
### **2. Selector Agent - Knowledge Intelligence**
```mermaid
graph TB
subgraph "๐ Tool Discovery Pipeline"
Query[Receive Tool Request]
Search[Knowledge Graph Search]
Filter[Capability Filtering]
Match[Requirement Matching]
end
subgraph "๐งฎ Similarity & Ranking"
Semantic[Semantic Similarity]
Vector[Vector Search]
Graph[Graph Traversal]
Hybrid[Hybrid Scoring]
end
subgraph "๐ฏ Selection Logic"
Score[Calculate Scores]
Rank[Rank Candidates]
Filter_Quality[Quality Filtering]
Select[Final Selection]
end
subgraph "๐ Contextual Factors"
Performance[Past Performance]
Availability[Tool Availability]
Cost[Resource Cost]
Constraints[Business Constraints]
end
Query --> Search
Search --> Filter
Filter --> Match
Match --> Semantic
Match --> Vector
Match --> Graph
Semantic --> Hybrid
Vector --> Hybrid
Graph --> Hybrid
Hybrid --> Score
Score --> Rank
Rank --> Filter_Quality
Filter_Quality --> Select
Performance --> Score
Availability --> Score
Cost --> Score
Constraints --> Filter_Quality
Select --> Feedback[Update Selection Models]
Feedback --> Search
style Query fill:#e1f5fe
style Semantic fill:#e8f5e8
style Score fill:#f3e5f5
style Select fill:#fff3e0
```
### **3. Executor Agent - Operational Intelligence**
```mermaid
sequenceDiagram
participant Planner as Planner Agent
participant Executor as Executor Agent
participant Tool1 as MCP Tool 1
participant Tool2 as MCP Tool 2
participant Monitor as Execution Monitor
participant Supervisor as Supervisor Agent
Planner->>Executor: Execute Plan
Note over Executor: Initialize Execution Context
Executor->>Executor: Prepare Execution Environment
Executor->>Monitor: Start Monitoring
loop For Each Step in Plan
Executor->>Tool1: Invoke Tool
Tool1-->>Executor: Stream Response
Executor->>Monitor: Log Progress
Monitor->>Supervisor: Validate Intermediate Result
Supervisor-->>Monitor: Validation Status
alt Validation Successful
Executor->>Tool2: Continue with Next Tool
else Validation Failed
Executor->>Executor: Execute Retry Logic
Executor->>Tool1: Retry Tool Invocation
end
end
Executor->>Monitor: Execution Complete
Monitor->>Supervisor: Final Validation
Supervisor-->>Executor: Final Status
Executor->>Planner: Return Results
Note over Executor: Update Execution Models
```
### **4. Supervisor Agent - Quality Intelligence**
```mermaid
flowchart TD
Start[Receive Execution Data] --> Validate[Validate Results]
Validate --> Quality{Quality Check}
Quality -->|Pass| Approve[Approve Results]
Quality -->|Fail| Analyze[Analyze Failure]
Analyze --> Classify[Classify Error Type]
Classify --> Decide{Recovery Decision}
Decide -->|Retry| Retry[Request Retry]
Decide -->|Fallback| Fallback[Activate Fallback]
Decide -->|Abort| Abort[Abort Execution]
Approve --> Learn[Learn from Success]
Retry --> Monitor[Monitor Retry]
Fallback --> Monitor
Monitor --> Validate
Learn --> UpdateKG[Update Knowledge Graph]
Abort --> LogFailure[Log Failure Pattern]
LogFailure --> UpdateKG
UpdateKG --> Improve[Improve Agent Models]
Improve --> End[Complete Supervision]
subgraph "๐ Quality Assurance"
Validate
Quality
Analyze
end
subgraph "๐ก๏ธ Error Recovery"
Classify
Decide
Retry
Fallback
end
subgraph "๐ Continuous Learning"
Learn
UpdateKG
Improve
end
style Start fill:#e3f2fd
style Quality fill:#e8f5e8
style Learn fill:#f3e5f5
style Improve fill:#fce4ec
```
## ๐ Agent Communication Patterns
### **Inter-Agent Communication Protocol**
```mermaid
graph TB
subgraph "๐ก Communication Layer"
MessageBus[Message Bus<br/>Event-Driven Communication]
Protocol[Communication Protocol<br/>Standardized Messages]
Router[Message Router<br/>Intelligent Routing]
Queue[Message Queue<br/>Asynchronous Processing]
end
subgraph "๐ค Communication Patterns"
RequestReply[Request-Reply<br/>Synchronous Communication]
PubSub[Publish-Subscribe<br/>Event Broadcasting]
Pipeline[Pipeline<br/>Sequential Processing]
Broadcast[Broadcast<br/>All-Agent Notifications]
end
subgraph "๐ Message Types"
TaskMsg[Task Messages<br/>Planning & Execution]
StatusMsg[Status Messages<br/>Progress Updates]
DataMsg[Data Messages<br/>Results & Context]
ControlMsg[Control Messages<br/>Coordination & Commands]
end
MessageBus --> RequestReply
MessageBus --> PubSub
MessageBus --> Pipeline
MessageBus --> Broadcast
Protocol --> TaskMsg
Protocol --> StatusMsg
Protocol --> DataMsg
Protocol --> ControlMsg
Router --> Queue
Queue --> MessageBus
RequestReply --> TaskMsg
PubSub --> StatusMsg
Pipeline --> DataMsg
Broadcast --> ControlMsg
style MessageBus fill:#e1f5fe
style RequestReply fill:#e8f5e8
style TaskMsg fill:#f3e5f5
style Router fill:#fff3e0
```
### **Agent Coordination Workflow**
```mermaid
stateDiagram-v2
[*] --> Idle
Idle --> Planning : User Request Received
Planning --> ToolSelection : Plan Generated
ToolSelection --> Execution : Tools Selected
Execution --> Monitoring : Execution Started
Monitoring --> Validation : Step Completed
Validation --> Execution : Continue Execution
Validation --> ErrorHandling : Validation Failed
ErrorHandling --> Retry : Recoverable Error
ErrorHandling --> Fallback : Non-recoverable Error
ErrorHandling --> Abort : Critical Error
Retry --> Execution
Fallback --> ToolSelection
Abort --> Learning
Execution --> Completion : All Steps Done
Completion --> Learning : Results Validated
Learning --> Idle : Models Updated
state Planning {
[*] --> GoalAnalysis
GoalAnalysis --> TaskDecomposition
TaskDecomposition --> DependencyMapping
DependencyMapping --> PlanGeneration
PlanGeneration --> [*]
}
state Execution {
[*] --> ToolInvocation
ToolInvocation --> ProgressMonitoring
ProgressMonitoring --> ResultCollection
ResultCollection --> [*]
}
state Learning {
[*] --> PerformanceAnalysis
PerformanceAnalysis --> PatternIdentification
PatternIdentification --> ModelUpdate
ModelUpdate --> KnowledgeGraphUpdate
KnowledgeGraphUpdate --> [*]
}
```
## ๐ง Agent Intelligence Mechanisms
### **Planner Agent Decision Making**
```mermaid
flowchart TD
Goal[User Goal] --> Context[Gather Context]
Context --> Knowledge[Query Knowledge Base]
Knowledge --> Patterns[Identify Patterns]
Patterns --> Generate[Generate Plan Options]
Generate --> Evaluate[Evaluate Options]
Evaluate --> Score[Score Plans]
Score --> Select{Select Best Plan}
Select -->|Confidence > Threshold| Execute[Execute Plan]
Select -->|Confidence < Threshold| Explore[Explore Alternatives]
Explore --> Research[Research Domain]
Research --> Consult[Consult Other Agents]
Consult --> Generate
Execute --> Monitor[Monitor Execution]
Monitor --> Feedback[Collect Feedback]
Feedback --> Learn[Update Planning Model]
Learn --> Knowledge
subgraph "๐ฏ Decision Factors"
Complexity[Task Complexity]
Resources[Available Resources]
History[Historical Success]
Constraints[User Constraints]
end
Complexity --> Score
Resources --> Score
History --> Score
Constraints --> Evaluate
style Goal fill:#e3f2fd
style Generate fill:#e8f5e8
style Select fill:#f3e5f5
style Learn fill:#fce4ec
```
### **Selector Agent Reasoning Process**
```mermaid
graph TB
subgraph "๐ Tool Analysis Pipeline"
Capability[Tool Capability Analysis]
Compatibility[Compatibility Check]
Performance[Performance History]
Context[Context Relevance]
end
subgraph "๐งฎ Scoring Algorithm"
Semantic[Semantic Similarity<br/>0.0 - 1.0]
Functional[Functional Match<br/>0.0 - 1.0]
Quality[Quality Score<br/>0.0 - 1.0]
Availability[Availability Score<br/>0.0 - 1.0]
end
subgraph "โ๏ธ Weighted Decision"
Weights[Configure Weights<br/>ฮฑ, ฮฒ, ฮณ, ฮด]
Combine[Weighted Combination<br/>ฮฑรS + ฮฒรF + ฮณรQ + ฮดรA]
Threshold[Apply Threshold<br/>Min Score Required]
Rank[Final Ranking<br/>Top K Tools]
end
Capability --> Semantic
Compatibility --> Functional
Performance --> Quality
Context --> Availability
Semantic --> Weights
Functional --> Weights
Quality --> Weights
Availability --> Weights
Weights --> Combine
Combine --> Threshold
Threshold --> Rank
Rank --> Feedback[Learning Feedback]
Feedback --> Capability
style Capability fill:#e1f5fe
style Semantic fill:#e8f5e8
style Combine fill:#f3e5f5
style Rank fill:#fff3e0
```
### **Executor Agent Resource Management**
```mermaid
graph LR
subgraph "๐ Resource Pool"
CPU[CPU Resources]
Memory[Memory Pool]
Network[Network Bandwidth]
Connections[Tool Connections]
end
subgraph "๐ฏ Allocation Strategy"
Assess[Assess Requirements]
Reserve[Reserve Resources]
Monitor[Monitor Usage]
Release[Release Resources]
end
subgraph "โก Optimization"
LoadBalance[Load Balancing]
Queue[Request Queuing]
Priority[Priority Management]
Scaling[Dynamic Scaling]
end
subgraph "๐ก๏ธ Safety Mechanisms"
Limits[Resource Limits]
Timeout[Timeout Handling]
Fallback[Fallback Resources]
Recovery[Recovery Procedures]
end
CPU --> Assess
Memory --> Assess
Network --> Reserve
Connections --> Reserve
Assess --> LoadBalance
Reserve --> Queue
Monitor --> Priority
Release --> Scaling
LoadBalance --> Limits
Queue --> Timeout
Priority --> Fallback
Scaling --> Recovery
style CPU fill:#e1f5fe
style Assess fill:#e8f5e8
style LoadBalance fill:#f3e5f5
style Limits fill:#ffebee
```
## ๐ Agent Learning & Adaptation
### **Continuous Learning Architecture**
```mermaid
flowchart TD
Experience[Execution Experience] --> Collect[Collect Data]
Collect --> Process[Process Patterns]
Process --> Extract[Extract Insights]
Extract --> ModelUpdate[Update Agent Models]
ModelUpdate --> Validate[Validate Improvements]
Validate --> Deploy{Deploy Updates?}
Deploy -->|Yes| Apply[Apply to Production]
Deploy -->|No| Rollback[Rollback Changes]
Apply --> Monitor[Monitor Performance]
Monitor --> Measure[Measure Impact]
Measure --> Feedback[Generate Feedback]
Feedback --> Experience
Rollback --> Experience
subgraph "๐ง Learning Components"
PatternRecognition[Pattern Recognition]
ReinforcementLearning[Reinforcement Learning]
TransferLearning[Transfer Learning]
MetaLearning[Meta Learning]
end
subgraph "๐ Learning Metrics"
Success[Success Rate]
Efficiency[Efficiency Improvement]
UserSatisfaction[User Satisfaction]
ToolPerformance[Tool Performance]
end
Process --> PatternRecognition
Extract --> ReinforcementLearning
ModelUpdate --> TransferLearning
Validate --> MetaLearning
Measure --> Success
Measure --> Efficiency
Measure --> UserSatisfaction
Measure --> ToolPerformance
style Experience fill:#e3f2fd
style Extract fill:#e8f5e8
style Apply fill:#f3e5f5
style PatternRecognition fill:#fce4ec
```
### **Agent Performance Optimization**
```mermaid
graph TB
subgraph "๐ Performance Monitoring"
ResponseTime[Response Time]
Accuracy[Decision Accuracy]
ResourceUsage[Resource Usage]
UserFeedback[User Feedback]
end
subgraph "๐ Analysis Engine"
Baseline[Establish Baseline]
Compare[Compare Performance]
Identify[Identify Bottlenecks]
Root[Root Cause Analysis]
end
subgraph "โก Optimization Strategies"
Algorithm[Algorithm Tuning]
Parallel[Parallelization]
Cache[Caching Strategy]
Load[Load Distribution]
end
subgraph "โ
Validation & Deployment"
Test[A/B Testing]
Gradual[Gradual Rollout]
Monitor[Monitor Changes]
Rollback[Rollback if Needed]
end
ResponseTime --> Baseline
Accuracy --> Compare
ResourceUsage --> Identify
UserFeedback --> Root
Baseline --> Algorithm
Compare --> Parallel
Identify --> Cache
Root --> Load
Algorithm --> Test
Parallel --> Gradual
Cache --> Monitor
Load --> Rollback
style ResponseTime fill:#e1f5fe
style Baseline fill:#e8f5e8
style Algorithm fill:#f3e5f5
style Test fill:#fff3e0
```
## ๐ Agent Security & Reliability
### **Security Architecture**
```mermaid
graph TB
subgraph "๐ก๏ธ Security Layers"
Authentication[Agent Authentication]
Authorization[Authorization Control]
Encryption[Communication Encryption]
Validation[Input Validation]
end
subgraph "๐ Trust Management"
Identity[Agent Identity Verification]
Reputation[Reputation System]
Permissions[Permission Management]
Audit[Audit Logging]
end
subgraph "๐จ Threat Protection"
Anomaly[Anomaly Detection]
Intrusion[Intrusion Detection]
Isolation[Agent Isolation]
Recovery[Security Recovery]
end
Authentication --> Identity
Authorization --> Reputation
Encryption --> Permissions
Validation --> Audit
Identity --> Anomaly
Reputation --> Intrusion
Permissions --> Isolation
Audit --> Recovery
style Authentication fill:#e1f5fe
style Identity fill:#e8f5e8
style Anomaly fill:#ffebee
```
---
## ๐ Related Documentation
- [System Architecture Overview](overview.md) - Complete system design
- [Data Flow Architecture](data-flow.md) - Information processing patterns
- [Knowledge Graph Architecture](knowledge-graph.md) - Knowledge representation
- [API Documentation](../api/agents/index.md) - Agent API interfaces
*This agent architecture documentation provides comprehensive insights into KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.*
|