File size: 3,759 Bytes
1f2d50a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
title: Architecture
description: KGraph-MCP system architecture and design documentation
---
# Architecture
Comprehensive documentation of KGraph-MCP's system architecture, design patterns, and technical implementation details.
## ποΈ **Architecture Sections**
<div class="grid cards" markdown>
- :material-sitemap:{ .lg .middle } **Overview**
---
High-level system architecture and component relationships.
[:octicons-arrow-right-24: Architecture Overview](overview.md)
- :material-layers:{ .lg .middle } **Components**
---
Detailed breakdown of system components and their responsibilities.
[:octicons-arrow-right-24: System Components](components.md)
- :material-graph:{ .lg .middle } **Knowledge Graph**
---
Knowledge Graph design, schema, and integration patterns.
[:octicons-arrow-right-24: Knowledge Graph Architecture](knowledge-graph.md)
- :material-robot:{ .lg .middle } **AI Agents**
---
Agent framework architecture and autonomous system design.
[:octicons-arrow-right-24: Agent Architecture](agents.md)
</div>
## π― **Core Design Principles**
KGraph-MCP is built on these foundational principles:
### **1. Knowledge-Driven Architecture**
- Semantic representation of MCP primitives
- Graph-based tool discovery and orchestration
- Intelligent tool selection and routing
### **2. Agent-Based Autonomy**
- Specialized AI agents for different functions
- Self-orchestrating tool networks
- Autonomous task planning and execution
### **3. Modular & Extensible**
- Plugin-based architecture
- Clean separation of concerns
- Easy integration with existing MCP servers
### **4. Performance & Scalability**
- Efficient graph operations
- Asynchronous processing
- Horizontal scaling capabilities
## π§© **System Components**
```mermaid
graph TB
subgraph "KGraph-MCP Architecture"
subgraph "Presentation Layer"
gradio[Gradio UI]
fastapi[FastAPI Server]
end
subgraph "Agent Layer"
planner[Planner Agent]
selector[Selector Agent]
executor[Executor Agent]
supervisor[Supervisor Agent]
end
subgraph "Knowledge Layer"
kg[Knowledge Graph]
embeddings[Embedding Service]
reasoning[Reasoning Engine]
end
subgraph "Integration Layer"
mcp[MCP Connectors]
tools[Tool Registry]
servers[MCP Servers]
end
end
gradio --> fastapi
fastapi --> planner
planner --> selector
selector --> executor
executor --> supervisor
planner --> kg
selector --> kg
executor --> tools
supervisor --> kg
kg --> embeddings
kg --> reasoning
tools --> mcp
mcp --> servers
```
## π **Architecture Patterns**
- **Event-Driven Architecture** - Asynchronous event processing
- **Microservices Pattern** - Loosely coupled, independently deployable services
- **Repository Pattern** - Data access abstraction
- **Strategy Pattern** - Pluggable algorithms and behaviors
- **Observer Pattern** - Real-time status updates and monitoring
## π **Integration Points**
- **MCP Protocol** - Model Context Protocol compliance
- **RESTful APIs** - HTTP-based external integrations
- **WebSocket** - Real-time bidirectional communication
- **Graph Databases** - Native graph storage and querying
- **Vector Databases** - Semantic search and similarity
## π **Related Documentation**
- [Developer Guide](../developer-guide/index.md) - Development and contribution
- [API Reference](../api/index.md) - Complete API documentation
- [User Guide](../user-guide/index.md) - Getting started guide
|