File size: 15,869 Bytes
1f2d50a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# MVP 3 Dynamic UI Strategy: Interactive Prompt Filling Components
**Task ID:** 43
**Status:** In Progress
**Date:** 2025-06-08
**Author:** Claude 4.0 Development Agent
---
## π― Strategic Decision Summary
**CHOSEN STRATEGY: Pre-defined Maximum Input Fields (Option 1)**
After comprehensive analysis, the pre-defined maximum input approach is optimal for MVP 3 Sprint 1 implementation.
---
## π Current State Analysis
### **Existing UI Architecture**
- **Clean MVP 2 Implementation:** Professional Gradio interface with custom CSS
- **Single Output Model:** `handle_find_tools()` returns `dict` to `gr.JSON` component
- **Static Display:** Input variables shown as read-only information in JSON format
- **Proven Performance:** Sub-400ms response times with 102 tests passing
### **Input Variable Requirements Analysis**
Based on `data/initial_prompts.json` analysis:
| Prompt | Variables | Complexity | Example |
|--------|-----------|------------|---------|
| Basic Text Summary | 1 | Simple | `input_text` |
| Structured Document | 3 | Medium | `document_type`, `focus_areas`, `content` |
| Customer Feedback | 2 | Medium | `product_service`, `feedback_text` |
| Social Monitoring | 3 | Medium | `platform`, `topic`, `social_content` |
| Accessibility Caption | 3 | Medium | `context`, `key_elements`, `target_audience` |
| Creative Content | 4 | Complex | `tone`, `content_type`, `purpose`, `highlight_aspects` |
| Security Audit | 4 | Complex | `language`, `application_type`, `security_concerns`, `code_snippet` |
| Code Quality Review | 4 | Complex | `language`, `team_type`, `coding_standards`, `code_block` |
**Key Insights:**
- **Range:** 1-4 input variables per prompt
- **Distribution:** 37.5% (3 prompts) have 3+ variables, 25% have 4 variables
- **Recommendation:** `MAX_PROMPT_INPUTS = 5` provides comfortable buffer
---
## ποΈ Strategy Options Evaluation
### **Option 1: Pre-defined Maximum Input Fields β
CHOSEN**
**Implementation:**
- Create 5 `gr.Textbox` components in UI layout (initially `visible=False`)
- Show/hide and update labels dynamically based on selected prompt
- Use `gr.update()` for reactive state management
**Pros:**
- β
**Gradio State Simplicity:** Minimal complexity for reactive updates
- β
**Development Speed:** Fast implementation for hackathon timeline
- β
**Predictable Behavior:** Fixed components reduce debugging complexity
- β
**User Experience:** Smooth, consistent transitions
- β
**Performance:** No component creation/destruction overhead
- β
**Maintenance:** Easy to understand and modify
**Cons:**
- β οΈ **Fixed Limit:** Cannot handle prompts with >5 variables (acceptable limitation)
- β οΈ **Minor Overhead:** Unused components exist in DOM (negligible impact)
### **Option 2: Dynamic Group Rendering**
**Implementation:**
- Use `gr.Group` with conditional component creation
- More complex state management with Gradio's reactive model
**Pros:**
- β
**Flexibility:** Can handle any number of variables
- β
**Efficiency:** Only creates needed components
**Cons:**
- β **Complexity:** More difficult state management
- β **Development Time:** Longer implementation for complex reactive patterns
- β **Risk:** Higher chance of Gradio state inconsistencies
- β **Debugging:** More complex to troubleshoot
### **Option 3: HTML/JS Injection**
**Implementation:**
- Custom HTML/JavaScript for dynamic input generation
- Breaks out of Gradio's Python-first model
**Cons:**
- β **Gradio Integration:** Poor integration with Gradio's reactive system
- β **Maintenance:** Mixed technology stack complexity
- β **User Experience:** Potential inconsistencies with Gradio styling
---
## π¨ UI Flow & User Interaction Design
### **User Journey Flow:**
```
1. User enters query β "analyze customer sentiment"
2. Click "Generate Action Plan" button
3. System displays tool+prompt combination in JSON
4. **NEW:** Input fields appear below JSON results
5. **NEW:** Execute button becomes visible
6. User fills input fields β "mobile app", "crashes frequently"
7. **FUTURE:** User clicks Execute β simulated results shown
```
### **Visual Hierarchy:**
```
βββββββββββββββββββββββββββββββββββββββββββββββ
β Query Input & Generate Action Plan Button β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β JSON Results (existing MVP 2 functionality) β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β β¨ NEW: Interactive Input Fields Section β
β βββββββββββββββββββββββββββββββββββββββββββ β
β β π Fill Prompt Variables β β
β β βββββββββββββββββββ βββββββββββββββββββ β β
β β β Product/Service β β Feedback Text β β β
β β βββββββββββββββββββ βββββββββββββββββββ β β
β β [π Execute Plan (Simulated)] β β
β βββββββββββββββββββββββββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β β¨ FUTURE: Execution Results Area β
βββββββββββββββββββββββββββββββββββββββββββββββ
```
### **Interaction States:**
1. **Initial State:** All input fields hidden, execute button hidden
2. **Plan Generated:** Relevant input fields visible with proper labels
3. **Fields Populated:** Execute button enabled (future sprint)
4. **Executing:** Loading state with spinner (future sprint)
5. **Results Shown:** Execution output displayed (future sprint)
---
## π§ Technical Implementation Approach
### **Configuration Constants:**
```python
# Configuration for MVP 3
MAX_PROMPT_INPUTS = 5 # Covers 100% of current prompts with buffer
PROMPT_INPUT_PREFIX = "prompt_input_" # Element ID prefix for testing
```
### **New UI Components:**
```python
# Inside create_gradio_interface() after results_output_json
with gr.Column(visible=False) as prompt_inputs_group:
gr.Markdown("### π Fill Prompt Variables")
gr.Markdown("*Complete the required information for your selected action plan*")
# Pre-defined input fields
prompt_input_fields = []
for i in range(MAX_PROMPT_INPUTS):
field = gr.Textbox(
label=f"Input {i+1}", # Will be updated dynamically
visible=False,
interactive=True,
lines=2, # Allow for longer inputs like code snippets
elem_id=f"{PROMPT_INPUT_PREFIX}{i}",
placeholder="Enter value..."
)
prompt_input_fields.append(field)
# Execute button (for MVP 3 Sprint 2)
execute_button = gr.Button(
"π Execute Plan (Simulated)",
visible=False,
variant="primary",
elem_id="execute_plan_button"
)
# Execution results area (for MVP 3 Sprint 2)
execution_output_display = gr.Markdown(
"",
elem_id="execution_results",
label="π― Execution Results"
)
```
### **Enhanced State Management:**
```python
def handle_find_tools(query: str) -> tuple:
"""Enhanced return signature for MVP 3 dynamic inputs."""
# ... existing logic for JSON results ...
# Initialize dynamic input updates
textbox_updates = []
prompt_inputs_group_update = gr.Column.update(visible=False)
execute_button_update = gr.Button.update(visible=False)
execution_output_update = gr.Markdown.update(value="")
# Check if we have planned steps with input variables
if planned_steps and planned_steps[0].prompt.input_variables:
current_plan = planned_steps[0] # Focus on first/top plan
input_vars = current_plan.prompt.input_variables
# Show input group if variables exist
prompt_inputs_group_update = gr.Column.update(visible=True)
execute_button_update = gr.Button.update(visible=True)
# Configure each textbox
for i in range(MAX_PROMPT_INPUTS):
if i < len(input_vars):
var_name = input_vars[i]
textbox_updates.append(gr.Textbox.update(
label=f"π {_format_variable_label(var_name)}",
visible=True,
placeholder=f"Enter {_get_variable_description(var_name)}",
value="", # Clear previous values
interactive=True
))
else:
textbox_updates.append(gr.Textbox.update(
visible=False,
value=""
))
else:
# No variables or no plans - hide all input fields
for _ in range(MAX_PROMPT_INPUTS):
textbox_updates.append(gr.Textbox.update(
visible=False,
value=""
))
return (
results_json, # Existing JSON output
prompt_inputs_group_update, # Group visibility
*textbox_updates, # Individual textbox updates (5 items)
execute_button_update, # Execute button visibility
execution_output_update # Clear execution results
)
def _format_variable_label(var_name: str) -> str:
"""Format variable name for better UX."""
return var_name.replace('_', ' ').title()
```
### **Event Wiring Update:**
```python
# Updated find_button.click() event
find_button.click(
fn=handle_find_tools,
inputs=[query_input],
outputs=[
results_output_json, # Existing output
prompt_inputs_group, # Group visibility
*prompt_input_fields, # All 5 textbox fields
execute_button, # Execute button
execution_output_display # Results display
],
api_name="find_tools"
)
```
---
## π§ͺ Quality Assurance Strategy
### **Testing Approach:**
1. **Component Testing:** Individual `gr.update()` validation
2. **State Testing:** Verify correct show/hide behavior
3. **Integration Testing:** Full user workflow validation
4. **Performance Testing:** Ensure <400ms response maintained
5. **Regression Testing:** All existing MVP 2 functionality preserved
### **Edge Cases to Handle:**
- **No Input Variables:** Prompt with empty `input_variables` list
- **Single Variable:** Simple prompts with one input
- **Maximum Variables:** 4-5 variable prompts (stress test)
- **Rapid Query Changes:** Quick succession of different prompts
- **Empty Query Results:** No plans found scenario
### **Error States:**
- **Component Failures:** Graceful degradation if Gradio updates fail
- **State Inconsistencies:** Fallback to hidden state
- **Performance Issues:** Monitoring for response time degradation
---
## π Integration Points with Existing Code
### **Files to Modify:**
1. **`app.py`:** Primary implementation file
- `create_gradio_interface()` function
- `handle_find_tools()` function
- Add new helper functions for variable formatting
2. **CSS Enhancements:** Extend existing custom CSS
```css
.prompt-inputs-section {
background: #f8f9fa;
border-radius: 8px;
padding: 16px;
margin: 16px 0;
border: 1px solid #e9ecef;
}
.input-field {
margin: 8px 0;
}
.execute-button {
background: linear-gradient(135deg, #28a745 0%, #20c997 100%);
margin-top: 16px;
}
```
### **Backward Compatibility:**
- β
All existing MVP 2 functionality preserved
- β
JSON output format unchanged
- β
API endpoints remain identical
- β
Performance characteristics maintained
### **Dependencies:**
- β
No new external dependencies required
- β
Uses existing Gradio capabilities
- β
Compatible with current project structure
---
## π Performance Considerations
### **Response Time Targets:**
- **Existing:** <400ms for tool suggestion
- **MVP 3:** <450ms including dynamic UI updates (10% buffer)
- **Memory:** Minimal increase from 5 additional Gradio components
### **Optimization Strategies:**
1. **Minimal DOM Changes:** Only update necessary components
2. **Efficient State Updates:** Use targeted `gr.update()` calls
3. **Caching:** Reuse formatted variable descriptions
4. **Progressive Enhancement:** Add features without breaking core functionality
---
## π― Success Metrics
### **Technical Metrics:**
- [ ] Dynamic input fields operational for 1-5 variables
- [ ] No performance degradation (maintain <450ms target)
- [ ] Zero Gradio console errors
- [ ] All existing tests continue passing
### **User Experience Metrics:**
- [ ] Intuitive input field labeling and placeholders
- [ ] Smooth visual transitions between states
- [ ] Clear feedback for all interaction states
- [ ] Mobile-responsive behavior maintained
### **Quality Metrics:**
- [ ] Code quality gates passing (lint, type, test)
- [ ] Comprehensive test coverage for new functionality
- [ ] Documentation updated appropriately
- [ ] Ready for MVP 3 Sprint 2 implementation
---
## π Future Sprint Dependencies
### **MVP 3 Sprint 2 Requirements:**
This strategy creates the foundation for Sprint 2:
1. **Input Collection:** Gather user values from dynamic fields
2. **Input Validation:** Ensure required fields are completed
3. **Execute Button Logic:** Wire execution functionality
4. **Result Display:** Show simulated execution output
### **Interface Contract:**
```python
# Future function signature for Sprint 2
def handle_execute_plan(
query: str,
input_1: str, input_2: str, input_3: str,
input_4: str, input_5: str
) -> str:
"""Execute the planned step with user inputs."""
# Implementation in Sprint 2
pass
```
---
## π Implementation Plan Summary
### **Phase 1: UI Layout (30 minutes)**
- Add 5 predefined `gr.Textbox` components
- Create container group with visibility control
- Add execute button infrastructure
- Update CSS styling
### **Phase 2: State Management (45 minutes)**
- Modify `handle_find_tools()` return signature
- Implement dynamic label and placeholder generation
- Create input field update logic
- Handle edge cases and error states
### **Phase 3: Event Wiring (15 minutes)**
- Update `find_button.click()` outputs mapping
- Test Gradio reactive updates
- Verify state synchronization
### **Phase 4: Testing & Validation (30 minutes)**
- Component-level testing
- Integration testing with various prompts
- Performance validation
- User experience verification
---
## β
Decision Rationale
**Why Pre-defined Maximum Input Fields is Optimal:**
1. **Hackathon Timeline:** Fast, reliable implementation
2. **Gradio Expertise:** Leverages team's proven Gradio experience
3. **Risk Management:** Low complexity reduces implementation risk
4. **Performance:** Maintains excellent response times
5. **User Experience:** Smooth, predictable interactions
6. **Maintenance:** Easy to understand and extend
7. **Coverage:** Handles 100% of current prompts with growth buffer
**Strategic Confidence:** 95% - This approach aligns perfectly with project goals, timeline, and technical constraints.
---
**Status:** Strategy Complete β
**Next Action:** Begin Task 44 - Implementation Phase
**Expected Implementation Time:** 90-120 minutes
**Risk Level:** LOW - Building on proven foundation with validated approach |