File size: 15,842 Bytes
1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 64ced8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
"""Async embedding service for semantic similarity in MCP tools.
This module provides high-performance async embedding functionality with
caching, batch processing, and memory optimization.
"""
import hashlib
import logging
import math
import os
from typing import Any
import openai
from dotenv import load_dotenv
from .ontology import MCPPrompt, MCPTool
from .performance import (
AsyncBatchProcessor,
EmbeddingCache,
async_cached,
main_cache,
performance_monitor,
performance_monitor_instance,
)
# Load environment variables
load_dotenv()
logger = logging.getLogger(__name__)
class AsyncEmbeddingService:
"""High-performance async embedding service with caching and optimization."""
def __init__(self, embedding_dim: int = 128, batch_size: int = 10):
"""Initialize the async embedding service.
Args:
embedding_dim: Dimension of the embedding vectors
batch_size: Number of embeddings to process in a batch
"""
self.embedding_dim = embedding_dim
self.batch_size = batch_size
# Initialize caching
self.embedding_cache = EmbeddingCache(max_size=2000, compression_precision=6)
self.batch_processor = AsyncBatchProcessor(batch_size=batch_size, max_concurrent=5)
# Initialize OpenAI client
api_key = os.getenv("OPENAI_API_KEY")
if api_key:
self.openai_client: openai.AsyncOpenAI | None = openai.AsyncOpenAI(api_key=api_key)
self.model_name = "text-embedding-3-small"
else:
self.openai_client = None
self.model_name = "mock"
logger.warning("OPENAI_API_KEY not found. Using mock embeddings.")
# Performance tracking
self.embedding_requests = 0
self.cache_hits = 0
self._cache = {}
@performance_monitor(performance_monitor_instance)
async def get_embedding(self, text: str, use_cache: bool = True) -> list[float] | None:
"""Generate an embedding vector for the given text using OpenAI API.
Args:
text: The text to embed
use_cache: Whether to use caching
Returns:
A list of floats representing the embedding vector, or None if API call fails
"""
self.embedding_requests += 1
# Try cache first
if use_cache:
cache_key = hashlib.md5(f"{self.model_name}:{text}".encode()).hexdigest()
if cache_key in self._cache:
self.cache_hits += 1
return self._cache[cache_key]
if not self.openai_client:
logger.debug("OpenAI client not available, using mock embedding")
embedding = self._create_mock_embedding(text)
# Cache the mock embedding
if use_cache:
cache_key = hashlib.md5(f"{self.model_name}:{text}".encode()).hexdigest()
self._cache[cache_key] = embedding
return embedding
try:
# Preprocess text
cleaned_text = text.replace("\n", " ").strip()
# Limit text length to avoid API limits
if len(cleaned_text) > 8000:
cleaned_text = cleaned_text[:8000]
# Make async API call to OpenAI
response = await self.openai_client.embeddings.create(
input=cleaned_text,
model=self.model_name
)
# Extract embedding from response
embedding = response.data[0].embedding
# Cache the result
if use_cache:
cache_key = hashlib.md5(f"{self.model_name}:{text}".encode()).hexdigest()
self._cache[cache_key] = embedding
return embedding
except openai.APIError as e:
logger.error(f"OpenAI API error when generating embedding: {e}")
return self._create_mock_embedding(text)
except Exception as e:
logger.error(f"Unexpected error when generating embedding: {e}")
return self._create_mock_embedding(text)
async def get_embeddings_batch(self, texts: list[str], use_cache: bool = True) -> list[list[float] | None]:
"""Generate embeddings for multiple texts efficiently.
Args:
texts: List of texts to embed
use_cache: Whether to use caching
Returns:
List of embedding vectors
"""
if not texts:
return []
# Check cache for all texts first
embeddings = []
uncached_indices = []
uncached_texts = []
if use_cache:
for i, text in enumerate(texts):
cached = await self.embedding_cache.get_embedding(text, self.model_name)
if cached is not None:
embeddings.append(cached)
self.cache_hits += 1
else:
embeddings.append(None)
uncached_indices.append(i)
uncached_texts.append(text)
else:
uncached_indices = list(range(len(texts)))
uncached_texts = texts
embeddings = [None] * len(texts)
# Process uncached texts in batches
if uncached_texts:
if self.openai_client:
try:
# Process in batches for API efficiency
batch_embeddings = await self._process_embedding_batches(uncached_texts)
# Fill in the results and cache them
for idx, embedding in zip(uncached_indices, batch_embeddings, strict=False):
embeddings[idx] = embedding
if use_cache and embedding is not None:
await self.embedding_cache.set_embedding(
texts[idx], embedding, self.model_name
)
except Exception as e:
logger.error(f"Batch embedding failed: {e}")
# Fallback to mock embeddings
for idx, text in zip(uncached_indices, uncached_texts, strict=False):
embeddings[idx] = self._create_mock_embedding(text)
else:
# Use mock embeddings
for idx, text in zip(uncached_indices, uncached_texts, strict=False):
embeddings[idx] = self._create_mock_embedding(text)
self.embedding_requests += len(texts)
return embeddings
async def _process_embedding_batches(self, texts: list[str]) -> list[list[float] | None]:
"""Process texts in batches for API efficiency."""
all_embeddings = []
# Process in chunks of API batch size
api_batch_size = min(100, len(texts)) # OpenAI limit
for i in range(0, len(texts), api_batch_size):
batch_texts = texts[i:i + api_batch_size]
try:
# Clean texts
cleaned_texts = [
text.replace("\n", " ").strip()[:8000]
for text in batch_texts
]
# Make batch API call
response = await self.openai_client.embeddings.create(
input=cleaned_texts,
model=self.model_name
)
# Extract embeddings
batch_embeddings = [data.embedding for data in response.data]
all_embeddings.extend(batch_embeddings)
except Exception as e:
logger.error(f"Batch API call failed: {e}")
# Fallback to mock for this batch
mock_embeddings = [self._create_mock_embedding(text) for text in batch_texts]
all_embeddings.extend(mock_embeddings)
return all_embeddings
def _create_mock_embedding(self, text: str) -> list[float]:
"""Create a deterministic mock embedding."""
# Create a deterministic hash-based embedding
text_hash = hashlib.sha256(text.encode()).hexdigest()
# Convert hash to numbers and normalize
embedding = []
for i in range(0, min(len(text_hash), self.embedding_dim * 2), 2):
hex_pair = text_hash[i : i + 2]
value = int(hex_pair, 16) / 255.0
embedding.append(value)
# Pad or truncate to desired dimension
while len(embedding) < self.embedding_dim:
embedding.append(0.0)
return embedding[:self.embedding_dim]
@async_cached(main_cache)
async def embed_tool_description(self, tool: MCPTool) -> list[float] | None:
"""Generate an embedding for a tool's description.
Args:
tool: The MCPTool to embed
Returns:
Embedding vector for the tool's description
"""
# Combine name, description, and tags for richer embedding
combined_text = f"{tool.name} {tool.description}"
if tool.tags:
combined_text += f" {' '.join(tool.tags)}"
return await self.get_embedding(combined_text)
@async_cached(main_cache)
async def embed_prompt_description(self, prompt: MCPPrompt) -> list[float] | None:
"""Generate an embedding for a prompt's description.
Args:
prompt: The MCPPrompt to embed
Returns:
Embedding vector for the prompt's description
"""
# Combine name, description, and template for richer embedding
combined_text = f"{prompt.name} {prompt.description}"
if prompt.template_string:
# Include template but limit length
template_preview = prompt.template_string[:200]
combined_text += f" {template_preview}"
return await self.get_embedding(combined_text)
async def embed_tools_batch(self, tools: list[MCPTool]) -> list[list[float] | None]:
"""Generate embeddings for multiple tools efficiently."""
tool_texts = []
for tool in tools:
combined_text = f"{tool.name} {tool.description}"
if tool.tags:
combined_text += f" {' '.join(tool.tags)}"
tool_texts.append(combined_text)
return await self.get_embeddings_batch(tool_texts)
async def embed_prompts_batch(self, prompts: list[MCPPrompt]) -> list[list[float] | None]:
"""Generate embeddings for multiple prompts efficiently."""
prompt_texts = []
for prompt in prompts:
combined_text = f"{prompt.name} {prompt.description}"
if prompt.template_string:
template_preview = prompt.template_string[:200]
combined_text += f" {template_preview}"
prompt_texts.append(combined_text)
return await self.get_embeddings_batch(prompt_texts)
def compute_similarity(
self, embedding1: list[float], embedding2: list[float]
) -> float:
"""Compute cosine similarity between two embeddings.
Args:
embedding1: First embedding vector
embedding2: Second embedding vector
Returns:
Similarity score between 0 and 1
"""
if not embedding1 or not embedding2:
return 0.0
# Ensure same length
min_len = min(len(embedding1), len(embedding2))
vec1 = embedding1[:min_len]
vec2 = embedding2[:min_len]
# Compute dot product
dot_product = sum(a * b for a, b in zip(vec1, vec2, strict=False))
# Compute magnitudes
magnitude1 = math.sqrt(sum(a * a for a in vec1))
magnitude2 = math.sqrt(sum(b * b for b in vec2))
# Avoid division by zero
if magnitude1 == 0 or magnitude2 == 0:
return 0.0
# Cosine similarity, normalized to 0-1 range
cosine_sim = dot_product / (magnitude1 * magnitude2)
return max(0.0, min(1.0, (cosine_sim + 1) / 2))
async def find_similar_tools(
self, query: str, tools: list[MCPTool], top_k: int = 5
) -> list[tuple[MCPTool, float]]:
"""Find tools most similar to the given query.
Args:
query: The search query text
tools: List of tools to search through
top_k: Maximum number of tools to return
Returns:
List of (tool, similarity_score) tuples, sorted by similarity
"""
if not tools:
return []
# Get query embedding
query_embedding = await self.get_embedding(query)
if query_embedding is None:
return [(tool, 0.0) for tool in tools[:top_k]]
# Get tool embeddings in batch
tool_embeddings = await self.embed_tools_batch(tools)
# Compute similarities
tool_similarities = []
for tool, tool_embedding in zip(tools, tool_embeddings, strict=False):
if tool_embedding is not None:
similarity = self.compute_similarity(query_embedding, tool_embedding)
tool_similarities.append((tool, similarity))
else:
tool_similarities.append((tool, 0.0))
# Sort by similarity (descending) and return top_k
tool_similarities.sort(key=lambda x: x[1], reverse=True)
return tool_similarities[:top_k]
async def find_similar_prompts(
self, query: str, prompts: list[MCPPrompt], top_k: int = 5
) -> list[tuple[MCPPrompt, float]]:
"""Find prompts most similar to the given query.
Args:
query: The search query text
prompts: List of prompts to search through
top_k: Maximum number of prompts to return
Returns:
List of (prompt, similarity_score) tuples, sorted by similarity
"""
if not prompts:
return []
# Get query embedding
query_embedding = await self.get_embedding(query)
if query_embedding is None:
return [(prompt, 0.0) for prompt in prompts[:top_k]]
# Get prompt embeddings in batch
prompt_embeddings = await self.embed_prompts_batch(prompts)
# Compute similarities
prompt_similarities = []
for prompt, prompt_embedding in zip(prompts, prompt_embeddings, strict=False):
if prompt_embedding is not None:
similarity = self.compute_similarity(query_embedding, prompt_embedding)
prompt_similarities.append((prompt, similarity))
else:
prompt_similarities.append((prompt, 0.0))
# Sort by similarity (descending) and return top_k
prompt_similarities.sort(key=lambda x: x[1], reverse=True)
return prompt_similarities[:top_k]
def get_performance_stats(self) -> dict[str, Any]:
"""Get embedding service performance statistics."""
cache_hit_rate = (
self.cache_hits / self.embedding_requests
if self.embedding_requests > 0 else 0
)
return {
"total_embedding_requests": self.embedding_requests,
"cache_hits": self.cache_hits,
"cache_hit_rate": cache_hit_rate,
"cache_size": len(self._cache),
"model_name": self.model_name,
"embedding_dim": self.embedding_dim,
"batch_size": self.batch_size,
"openai_available": self.openai_client is not None
}
async def warm_up_cache(self, texts: list[str]) -> None:
"""Pre-populate cache with common texts."""
logger.info(f"Warming up embedding cache with {len(texts)} texts...")
await self.get_embeddings_batch(texts, use_cache=True)
logger.info("Cache warm-up completed")
async def clear_cache(self) -> None:
"""Clear all caches."""
await self.embedding_cache.cache.clear()
logger.info("Embedding cache cleared")
|