File size: 14,848 Bytes
1f2d50a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
"""Tool Discovery Engine for MVP 1: KG-Powered Tool Suggester."""
import logging
import os
from dataclasses import dataclass
from datetime import datetime
from typing import Any
import numpy as np
from openai import OpenAI
from pydantic import BaseModel, Field
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MCPTool(BaseModel):
"""MCP Tool data model for the Knowledge Graph."""
id: str = Field(description="Unique tool identifier")
name: str = Field(description="Human-readable tool name")
description: str = Field(description="Detailed tool description")
category: str = Field(description="Tool category")
capabilities: list[str] = Field(
default_factory=list, description="Tool capabilities"
)
input_types: list[str] = Field(
default_factory=list, description="Supported input types"
)
output_types: list[str] = Field(
default_factory=list, description="Supported output types"
)
tags: list[str] = Field(default_factory=list, description="Search tags")
complexity: str = Field(default="medium", description="Tool complexity level")
created_at: datetime = Field(default_factory=datetime.now)
class ToolSearchCriteria(BaseModel):
"""Search criteria for tool discovery."""
query: str = Field(description="User's natural language query")
max_results: int = Field(default=3, description="Maximum number of results")
category_filter: str | None = Field(None, description="Filter by tool category")
complexity_filter: str | None = Field(None, description="Filter by complexity")
@dataclass
class ToolMatch:
"""Represents a tool match with similarity score."""
tool: MCPTool
similarity_score: float
tool_id: str
def __post_init__(self):
if not self.tool_id:
self.tool_id = self.tool.id
class EmbeddingService:
"""Service for generating and comparing embeddings."""
def __init__(self):
"""Initialize embedding service with OpenAI client."""
self.client = None
self._initialize_client()
def _initialize_client(self):
"""Initialize OpenAI client if API key available."""
api_key = os.getenv("OPENAI_API_KEY")
if api_key:
try:
self.client = OpenAI(api_key=api_key)
logger.info("OpenAI client initialized successfully")
except Exception as e:
logger.warning(f"Failed to initialize OpenAI client: {e}")
self.client = None
else:
logger.warning("OPENAI_API_KEY not found, using mock embeddings")
def get_embedding(self, text: str) -> list[float]:
"""Generate embedding for text."""
if self.client:
return self._get_openai_embedding(text)
return self._get_mock_embedding(text)
def _get_openai_embedding(self, text: str) -> list[float]:
"""Get embedding from OpenAI API."""
try:
response = self.client.embeddings.create(
model="text-embedding-3-small", input=text, encoding_format="float"
)
return response.data[0].embedding
except Exception as e:
logger.error(f"Failed to get OpenAI embedding: {e}")
return self._get_mock_embedding(text)
def _get_mock_embedding(self, text: str) -> list[float]:
"""Generate mock embedding for testing/demo purposes."""
# Create deterministic embedding based on text content
# This is for demo purposes when OpenAI API is not available
np.random.seed(hash(text) % 2**32)
embedding = np.random.rand(384).tolist()
# Add some semantic meaning by adjusting based on keywords
keywords = {
"summarize": [1.0, 0.8, 0.6],
"sentiment": [0.8, 1.0, 0.7],
"image": [0.6, 0.7, 1.0],
"translate": [0.7, 0.6, 0.8],
"analyze": [0.9, 0.8, 0.7],
}
text_lower = text.lower()
for keyword, weights in keywords.items():
if keyword in text_lower:
for i, weight in enumerate(weights):
if i < len(embedding):
embedding[i] *= weight
return embedding
def calculate_similarity(
self, embedding1: list[float], embedding2: list[float]
) -> float:
"""Calculate cosine similarity between two embeddings."""
vec1 = np.array(embedding1)
vec2 = np.array(embedding2)
# Normalize vectors
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
if norm1 == 0 or norm2 == 0:
return 0.0
vec1_normalized = vec1 / norm1
vec2_normalized = vec2 / norm2
# Calculate cosine similarity
similarity = np.dot(vec1_normalized, vec2_normalized)
return float(similarity)
class KnowledgeGraphService:
"""In-memory Knowledge Graph for tool metadata."""
def __init__(self):
"""Initialize in-memory storage."""
self.tools: dict[str, dict[str, Any]] = {}
self.embeddings: dict[str, list[float]] = {}
self.embedding_service = EmbeddingService()
def store_tool(self, tool_data: dict[str, Any]) -> None:
"""Store tool metadata and generate embedding."""
tool_id = tool_data["id"]
self.tools[tool_id] = tool_data
# Generate embedding for tool description
description = tool_data.get("description", "")
embedding = self.embedding_service.get_embedding(description)
self.embeddings[tool_id] = embedding
logger.info(f"Stored tool: {tool_id}")
def get_tool(self, tool_id: str) -> dict[str, Any] | None:
"""Retrieve tool by ID."""
return self.tools.get(tool_id)
def find_tools_by_capability(self, capability: str) -> list[dict[str, Any]]:
"""Find tools that have a specific capability."""
matching_tools = []
for tool_data in self.tools.values():
capabilities = tool_data.get("capabilities", [])
if capability in capabilities:
matching_tools.append(tool_data)
return matching_tools
def search_by_similarity(
self, query_embedding: list[float], max_results: int = 3
) -> list[tuple[str, float]]:
"""Search tools by embedding similarity."""
similarities = []
for tool_id, tool_embedding in self.embeddings.items():
similarity = self.embedding_service.calculate_similarity(
query_embedding, tool_embedding
)
similarities.append((tool_id, similarity))
# Sort by similarity (descending) and return top results
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:max_results]
def get_all_tools(self) -> list[dict[str, Any]]:
"""Get all stored tools."""
return list(self.tools.values())
class ToolDiscoveryEngine:
"""Main tool discovery engine for MVP 1."""
def __init__(self):
"""Initialize discovery engine with curated tools."""
self.kg_service = KnowledgeGraphService()
self.embedding_service = EmbeddingService()
self._load_curated_tools()
def _load_curated_tools(self) -> None:
"""Load curated mini-KG with 3-5 diverse MCP tools for MVP 1."""
curated_tools = [
{
"id": "summarizer",
"name": "Text Summarizer",
"description": "Summarizes long text documents into concise key points and bullet points. Perfect for news articles, research papers, and lengthy content.",
"category": "text_processing",
"capabilities": ["summarization", "text_analysis", "key_extraction"],
"input_types": ["text", "document"],
"output_types": ["text", "bullet_points"],
"tags": ["summarize", "compress", "key points", "extract"],
"complexity": "easy",
},
{
"id": "sentiment_analyzer",
"name": "Sentiment Analyzer",
"description": "Analyzes the emotional tone and sentiment of text content. Detects positive, negative, or neutral sentiment with confidence scores.",
"category": "text_analysis",
"capabilities": [
"sentiment_analysis",
"emotion_detection",
"mood_analysis",
],
"input_types": ["text", "social_media"],
"output_types": ["sentiment_score", "emotion_labels"],
"tags": ["sentiment", "emotion", "mood", "analyze", "feeling"],
"complexity": "medium",
},
{
"id": "image_generator",
"name": "Image Generator",
"description": "Generates creative images from text descriptions using AI. Creates artwork, illustrations, and visual content from natural language prompts.",
"category": "creative",
"capabilities": ["image_generation", "art_creation", "visual_design"],
"input_types": ["text_prompt", "description"],
"output_types": ["image", "artwork"],
"tags": ["image", "generate", "create", "art", "visual", "picture"],
"complexity": "medium",
},
{
"id": "translator",
"name": "Language Translator",
"description": "Translates text between multiple languages with high accuracy. Supports over 100 languages and preserves context and meaning.",
"category": "language",
"capabilities": ["translation", "language_detection", "multilingual"],
"input_types": ["text", "document"],
"output_types": ["translated_text"],
"tags": ["translate", "language", "multilingual", "convert"],
"complexity": "easy",
},
{
"id": "code_analyzer",
"name": "Code Analyzer",
"description": "Analyzes code quality, detects bugs, suggests improvements, and provides security recommendations for various programming languages.",
"category": "development",
"capabilities": [
"code_analysis",
"bug_detection",
"security_audit",
"quality_assessment",
],
"input_types": ["source_code", "repository"],
"output_types": ["analysis_report", "recommendations"],
"tags": ["code", "analyze", "bugs", "security", "quality", "review"],
"complexity": "advanced",
},
]
# Store all curated tools
for tool_data in curated_tools:
self.kg_service.store_tool(tool_data)
logger.info(f"Loaded {len(curated_tools)} curated MCP tools")
def load_curated_tools(self) -> list[MCPTool]:
"""Return curated tools as MCPTool objects."""
tools = []
for tool_data in self.kg_service.get_all_tools():
tool = MCPTool(**tool_data)
tools.append(tool)
return tools
def get_tool_by_id(self, tool_id: str) -> MCPTool | None:
"""Get specific tool by ID."""
tool_data = self.kg_service.get_tool(tool_id)
if tool_data:
return MCPTool(**tool_data)
return None
def search_tools(self, criteria: ToolSearchCriteria) -> list[ToolMatch]:
"""Search for tools based on user query using semantic similarity."""
# Generate embedding for user query
query_embedding = self.embedding_service.get_embedding(criteria.query)
# Find similar tools
similar_tools = self.kg_service.search_by_similarity(
query_embedding, criteria.max_results
)
results = []
for tool_id, similarity_score in similar_tools:
tool_data = self.kg_service.get_tool(tool_id)
if tool_data:
# Apply filters if specified
if (
criteria.category_filter
and tool_data.get("category") != criteria.category_filter
):
continue
if (
criteria.complexity_filter
and tool_data.get("complexity") != criteria.complexity_filter
):
continue
tool = MCPTool(**tool_data)
match = ToolMatch(
tool=tool, similarity_score=similarity_score, tool_id=tool_id
)
results.append(match)
# Sort by similarity score (descending)
results.sort(key=lambda x: x.similarity_score, reverse=True)
logger.info(
f"Found {len(results)} matching tools for query: '{criteria.query}'"
)
return results
def filter_recipes(self, tools: list[MCPTool], **filters) -> list[MCPTool]:
"""Filter tools by various criteria."""
filtered_tools = tools
if "category" in filters:
filtered_tools = [
t for t in filtered_tools if t.category == filters["category"]
]
if "complexity" in filters:
filtered_tools = [
t for t in filtered_tools if t.complexity == filters["complexity"]
]
if "capabilities" in filters:
required_caps = filters["capabilities"]
filtered_tools = [
t
for t in filtered_tools
if any(cap in t.capabilities for cap in required_caps)
]
return filtered_tools
def sort_recipes(
self, tools: list[MCPTool], sort_by: str = "name"
) -> list[MCPTool]:
"""Sort tools by specified criteria."""
if sort_by == "name":
return sorted(tools, key=lambda t: t.name)
if sort_by == "complexity":
complexity_order = {"easy": 1, "medium": 2, "advanced": 3}
return sorted(tools, key=lambda t: complexity_order.get(t.complexity, 2))
if sort_by == "category":
return sorted(tools, key=lambda t: t.category)
return tools
# Alias for consistency with the previous naming
RecipeRecommendationEngine = ToolDiscoveryEngine
SearchResult = ToolMatch
RecommendationScore = float
# Export all components
__all__ = [
"EmbeddingService",
"KnowledgeGraphService",
"MCPTool",
"RecipeRecommendationEngine",
"RecommendationScore",
"SearchResult",
"ToolDiscoveryEngine",
"ToolMatch",
"ToolSearchCriteria",
]
|