File size: 77,895 Bytes
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
 
 
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
 
 
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
1f2d50a
 
 
 
 
 
64ced8b
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
 
 
 
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
 
 
 
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
64ced8b
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65be7f3
 
1f2d50a
64ced8b
1f2d50a
64ced8b
1f2d50a
 
 
 
 
 
 
 
64ced8b
1f2d50a
 
 
 
 
 
 
 
65be7f3
 
 
 
 
 
1f2d50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
"""Tests for ExecutorAgent stub implementation.

This module provides comprehensive testing for the StubExecutorAgent and McpExecutorAgent classes.
The tests focus on validating mock execution simulation, tool-specific output generation,
error handling mechanisms, and system integration scenarios for MVP 3.

Key Testing Areas:
- Mock execution simulation with realistic tool outputs
- Error handling and recovery mechanisms  
- Tool-specific behavior validation (sentiment, summarization, code analysis, image processing)
- Input validation and edge case handling
- System integration and MCP protocol compliance

Educational Notes:
- StubExecutorAgent provides mock execution for testing without external dependencies
- McpExecutorAgent handles real MCP server communication with retry logic
- Tests use fixtures to create reusable test data and maintain consistency
- Parameterized tests validate behavior across multiple input scenarios
"""

import json
import time
from unittest.mock import Mock, patch

import pytest
import requests

from agents.executor import McpExecutorAgent, StubExecutorAgent
from kg_services.ontology import MCPPrompt, MCPTool, PlannedStep


class TestStubExecutorAgent:
    """Comprehensive test suite for StubExecutorAgent class.
    
    This test class validates the mock execution capabilities of StubExecutorAgent,
    which simulates tool execution without requiring actual external services.
    
    Test Categories:
    - Basic execution simulation and response structure
    - Tool-specific output generation and validation
    - Input handling and validation scenarios
    - Error simulation and handling
    - Performance and consistency testing
    
    Educational Purpose:
    These tests demonstrate how to properly mock complex system interactions
    while maintaining realistic behavior patterns for system validation.
    """

    @pytest.fixture
    def executor_agent(self) -> StubExecutorAgent:
        """Create a StubExecutorAgent instance for testing.
        
        Returns:
            StubExecutorAgent: Fresh instance configured for testing scenarios.
            
        Educational Note:
            Fixtures provide isolated test instances, ensuring tests don't interfere
            with each other and maintaining predictable test conditions.
        """
        return StubExecutorAgent()

    @pytest.fixture
    def sample_tool(self) -> MCPTool:
        """Create a sample sentiment analysis MCPTool for testing.
        
        Returns:
            MCPTool: Pre-configured sentiment analyzer tool with realistic metadata.
            
        Educational Note:
            This fixture represents a typical NLP tool configuration that would
            be used in production systems for text sentiment analysis.
        """
        return MCPTool(
            tool_id="sentiment-analyzer-v1",
            name="Advanced Sentiment Analyzer",
            description="Analyze sentiment and emotional tone of text",
            tags=["sentiment", "analysis", "nlp"],
            invocation_command_stub="sentiment_analyze --input {text} --format json",
        )

    @pytest.fixture
    def sentiment_prompt(self) -> MCPPrompt:
        """Create a sentiment analysis prompt for testing.
        
        Returns:
            MCPPrompt: Template for sentiment analysis with input variable mapping.
            
        Educational Note:
            Prompts define how tools should be invoked with specific inputs,
            acting as a bridge between user intent and tool execution.
        """
        return MCPPrompt(
            prompt_id="sentiment-basic-001",
            name="Basic Sentiment Analysis",
            description="Analyze sentiment of provided text",
            target_tool_id="sentiment-analyzer-v1",
            template_string="Analyze the sentiment of this text: {{text_content}}",
            input_variables=["text_content"],
            difficulty_level="beginner",
        )

    @pytest.fixture
    def summarizer_tool(self) -> MCPTool:
        """Create a text summarizer tool for testing.
        
        Returns:
            MCPTool: Pre-configured text summarization tool for document processing.
            
        Educational Note:
            Summarization tools represent complex NLP operations that require
            multiple parameters and produce structured outputs.
        """
        return MCPTool(
            tool_id="text-summarizer-v2",
            name="Intelligent Text Summarizer",
            description="Generate concise summaries of long text documents",
            tags=["summarization", "text", "nlp"],
            invocation_command_stub="summarize --input {text} --length {length}",
        )

    @pytest.fixture
    def summary_prompt(self) -> MCPPrompt:
        """Create a text summarization prompt for testing.
        
        Returns:
            MCPPrompt: Multi-input template for advanced document summarization.
            
        Educational Note:
            This prompt demonstrates how complex tools can accept multiple inputs
            to customize their behavior (document + focus area).
        """
        return MCPPrompt(
            prompt_id="summary-advanced-001",
            name="Advanced Document Summary",
            description="Create comprehensive summary with key points",
            target_tool_id="text-summarizer-v2",
            template_string="Summarize this document: {{document_text}} with focus on {{focus_area}}",
            input_variables=["document_text", "focus_area"],
            difficulty_level="intermediate",
        )

    @pytest.fixture
    def code_quality_tool(self) -> MCPTool:
        """Create a code quality analysis tool for testing.
        
        Returns:
            MCPTool: Pre-configured code analysis tool for quality assessment.
            
        Educational Note:
            Code quality tools represent static analysis capabilities that
            examine source code for security, performance, and style issues.
        """
        return MCPTool(
            tool_id="code-quality-linter",
            name="Code Quality Analyzer",
            description="Analyze code quality, security, and best practices",
            tags=["code", "quality", "security"],
            invocation_command_stub="lint_code --file {code_file} --rules {ruleset}",
        )

    @pytest.fixture
    def image_caption_tool(self) -> MCPTool:
        """Create an image captioning tool for testing.
        
        Returns:
            MCPTool: Pre-configured AI-powered image analysis tool.
            
        Educational Note:
            Image processing tools demonstrate multimodal AI capabilities,
            processing visual inputs to generate textual descriptions.
        """
        return MCPTool(
            tool_id="image-captioner-ai",
            name="AI Image Caption Generator",
            description="Generate descriptive captions for images using AI",
            tags=["image", "caption", "ai", "vision"],
            invocation_command_stub="caption_image --image {image_path} --style {caption_style}",
        )

    @pytest.fixture
    def sample_planned_step(
        self, sample_tool: MCPTool, sentiment_prompt: MCPPrompt
    ) -> PlannedStep:
        """Create a sample PlannedStep for testing execution workflows.
        
        Args:
            sample_tool: MCPTool fixture for sentiment analysis
            sentiment_prompt: MCPPrompt fixture for sentiment analysis
            
        Returns:
            PlannedStep: Complete execution plan combining tool, prompt, and relevance.
            
        Educational Note:
            PlannedStep represents a complete execution plan that binds a tool
            with a prompt and includes a relevance score indicating how well
            this combination matches the user's intent.
        """
        return PlannedStep(
            tool=sample_tool, prompt=sentiment_prompt, relevance_score=0.92
        )

    def test_executor_initialization(self, executor_agent: StubExecutorAgent) -> None:
        """Test that StubExecutorAgent initializes correctly.
        
        Args:
            executor_agent: StubExecutorAgent fixture
            
        Educational Purpose:
            Validates basic object instantiation and type checking.
            This is a fundamental sanity check that the class can be created.
        """
        assert isinstance(executor_agent, StubExecutorAgent)

    @patch("agents.executor.logger")
    def test_executor_initialization_logging(self, mock_logger: Mock) -> None:
        """Test that initialization logs correctly.
        
        Args:
            mock_logger: Mocked logger to capture log messages
            
        Educational Purpose:
            Demonstrates how to test logging behavior using mocks.
            Proper logging is crucial for debugging and monitoring system behavior.
        """
        # Act: Create executor instance to trigger logging
        StubExecutorAgent()

        # Assert: Verify the expected log message was emitted
        mock_logger.info.assert_called_once_with(
            "StubExecutorAgent initialized for MVP 3"
        )

    @patch("agents.executor.random.random")
    def test_simulate_execution_basic_success(
        self,
        mock_random: Mock,
        executor_agent: StubExecutorAgent,
        sample_planned_step: PlannedStep
    ) -> None:
        """Test basic successful execution simulation with realistic inputs.
        
        Args:
            mock_random: Mocked random function to control error simulation
            executor_agent: StubExecutorAgent fixture
            sample_planned_step: PlannedStep fixture for testing
            
        Educational Purpose:
            Demonstrates the happy path for execution simulation, showing how
            the system processes valid inputs and generates structured responses.
            
        Test Strategy:
            - Mock random to prevent error simulation (>15% threshold)
            - Provide realistic sentiment analysis input
            - Validate complete response structure and content
        """
        # Arrange: Set up test conditions to prevent random errors
        mock_random.return_value = 0.9  # Above 15% threshold - no random errors
        test_inputs: dict[str, str] = {"text_content": "This product is amazing and I love it!"}

        # Act: Simulate execution with the planned step and inputs
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert: Validate response structure and content
        assert isinstance(result, dict), "Response should be a dictionary"
        assert result["status"] == "simulated_success", "Should indicate successful simulation"
        assert "execution_id" in result, "Should include unique execution identifier"
        assert result["tool_information"]["tool_name"] == "Advanced Sentiment Analyzer"
        assert result["prompt_information"]["prompt_name"] == "Basic Sentiment Analysis"
        assert result["execution_details"]["inputs_received"] == test_inputs
        assert "mock_output" in result["results"], "Should include simulated tool output"

    @patch("agents.executor.random.random")
    def test_simulate_execution_comprehensive_structure(
        self,
        mock_random: Mock,
        executor_agent: StubExecutorAgent,
        sample_planned_step: PlannedStep
    ) -> None:
        """Test that execution response has complete and consistent structure.
        
        Args:
            mock_random: Mocked random function to control behavior
            executor_agent: StubExecutorAgent fixture
            sample_planned_step: PlannedStep fixture for testing
            
        Educational Purpose:
            Validates the complete response schema that external systems can rely on.
            This ensures API contract compliance and prevents integration issues.
            
        Test Strategy:
            - Verify all required top-level response keys are present
            - Validate nested object structures for completeness
            - Ensure data types match expected schema
        """
        # Arrange: Configure test to avoid random errors
        mock_random.return_value = 0.9  # Disable random error simulation
        test_inputs: dict[str, str] = {"text_content": "Test content"}

        # Act: Execute simulation and capture full response
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert: Validate complete response structure
        # Top-level keys must be present for API contract compliance
        expected_keys: list[str] = [
            "status",           # Execution outcome indicator
            "execution_id",     # Unique identifier for tracking
            "tool_information", # Tool metadata and configuration
            "prompt_information",# Prompt template and variables
            "execution_details",# Runtime information and metrics
            "results",          # Actual tool output and analysis
            "metadata",         # Additional context and debugging info
        ]
        for key in expected_keys:
            assert key in result, f"Required key '{key}' missing from response"

        # Assert: Validate tool_information nested structure
        tool_info = result["tool_information"]
        assert "tool_id" in tool_info, "Tool identifier required"
        assert "tool_name" in tool_info, "Tool name required for UI display"
        assert "tool_description" in tool_info, "Tool description required for context"

        # Assert: Validate execution_details structure
        exec_details = result["execution_details"]
        assert "inputs_received" in exec_details, "Input tracking required"
        assert "inputs_count" in exec_details, "Input metrics required"
        assert "execution_time_ms" in exec_details, "Performance metrics required"
        assert "complexity_level" in exec_details, "Complexity assessment required"

        # Assert: Validate results structure contains actual outputs
        results = result["results"]
        assert "message" in results, "Human-readable message required"
        assert "mock_output" in results, "Simulated tool output required"
        assert "confidence_score" in results, "Quality assessment required"

    @patch("agents.executor.random.random")
    def test_simulate_execution_sentiment_tool_output(
        self,
        mock_random: Mock,
        executor_agent: StubExecutorAgent,
        sample_tool: MCPTool,
        sentiment_prompt: MCPPrompt
    ) -> None:
        """Test sentiment analysis tool produces realistic mock output format.
        
        Args:
            mock_random: Mocked random function to control error simulation
            executor_agent: StubExecutorAgent fixture
            sample_tool: MCPTool fixture for sentiment analysis
            sentiment_prompt: MCPPrompt fixture for sentiment analysis
            
        Educational Purpose:
            Validates that the simulator generates realistic sentiment analysis output
            that matches what real sentiment analysis tools would produce.
            
        Test Strategy:
            - Create planned step combining sentiment tool and prompt
            - Provide positive sentiment text input
            - Verify output contains expected sentiment analysis elements
            - Check for realistic formatting and content structure
        """
        # Arrange: Disable random errors and create realistic test scenario
        mock_random.return_value = 0.5  # Above 15% threshold - no random errors

        planned_step = PlannedStep(
            tool=sample_tool, prompt=sentiment_prompt, relevance_score=0.88
        )
        # Use clearly positive text to test sentiment detection
        test_inputs: dict[str, str] = {"text_content": "I really enjoy this product!"}

        # Act: Execute sentiment analysis simulation
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert: Validate sentiment analysis specific output format
        mock_output = result["results"]["mock_output"]
        # Check for standard sentiment analysis output components
        assert "Sentiment Analysis Results" in mock_output, "Should contain results header"
        assert "Overall Sentiment Classification" in mock_output, "Should classify sentiment"
        assert "Confidence Metrics" in mock_output, "Should provide confidence scores"
        assert "Positive" in mock_output, "Should detect positive sentiment in test text"
        assert "Generated by Sentiment Analyzer Tool" in mock_output, "Should indicate tool source"

    @patch("agents.executor.random.random")
    def test_simulate_execution_summarizer_tool_output(
        self,
        mock_random: Mock,
        executor_agent: StubExecutorAgent,
        summarizer_tool: MCPTool,
        summary_prompt: MCPPrompt
    ) -> None:
        """Test text summarizer tool produces realistic mock summary output.
        
        Args:
            mock_random: Mocked random function to control error simulation
            executor_agent: StubExecutorAgent fixture  
            summarizer_tool: MCPTool fixture for text summarization
            summary_prompt: MCPPrompt fixture for multi-input summarization
            
        Educational Purpose:
            Validates that the simulator generates realistic text summarization output
            with structured sections that would be expected from real NLP tools.
            
        Test Strategy:
            - Test multi-input prompt handling (document + focus area)
            - Verify output contains expected summarization sections
            - Check for realistic summary structure and formatting
        """
        # Arrange: Configure test to avoid random errors
        mock_random.return_value = 0.5  # Above 15% threshold - no random errors

        planned_step = PlannedStep(
            tool=summarizer_tool, prompt=summary_prompt, relevance_score=0.90
        )
        # Test with multi-input scenario (document text + focus area)
        test_inputs: dict[str, str] = {
            "document_text": "Long document content...",
            "focus_area": "key insights",
        }

        # Act: Execute summarization simulation
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert: Validate summarization specific output format
        mock_output = result["results"]["mock_output"]
        # Check for standard summarization output components
        assert "Text Summarization Complete" in mock_output, "Should contain completion indicator"
        assert "Executive Summary" in mock_output, "Should provide executive summary section"
        assert "Key Points" in mock_output, "Should extract key points from content"
        assert "focus_area" in str(test_inputs), "Should handle multi-input processing"

        # Validate that the tool properly processes multiple inputs
        exec_details = result["execution_details"]
        assert exec_details["inputs_count"] == 2, "Should recognize two input parameters"

    @patch("agents.executor.random.random")
    def test_simulate_execution_code_quality_tool_output(
        self, mock_random, executor_agent, code_quality_tool
    ):
        """Test code quality analysis specific mock output."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        code_prompt = MCPPrompt(
            prompt_id="code-quality-001",
            name="Comprehensive Code Review",
            description="Analyze code for quality and security",
            target_tool_id="code-quality-linter",
            template_string="Review this code: {{source_code}}",
            input_variables=["source_code"],
            difficulty_level="advanced",
        )
        planned_step = PlannedStep(
            tool=code_quality_tool, prompt=code_prompt, relevance_score=0.87
        )
        test_inputs = {"source_code": "def hello_world():\n    print('Hello!')"}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Code Quality Analysis Complete" in mock_output
        assert "Overall Quality Score" in mock_output
        assert "Analysis Summary" in mock_output
        assert "Quality Metrics" in mock_output
        assert "Recommendations" in mock_output
        assert "Generated by Code Quality Linter Tool" in mock_output

    @patch("agents.executor.random.random")
    def test_simulate_execution_image_caption_tool_output(
        self, mock_random, executor_agent, image_caption_tool
    ):
        """Test image captioning specific mock output."""
        # Arrange
        mock_random.return_value = 0.9  # Disable random errors (15% threshold)
        caption_prompt = MCPPrompt(
            prompt_id="image-caption-001",
            name="Descriptive Image Caption",
            description="Generate detailed image captions",
            target_tool_id="image-captioner-ai",
            template_string="Caption this image: {{image_url}}",
            input_variables=["image_url"],
            difficulty_level="intermediate",
        )
        planned_step = PlannedStep(
            tool=image_caption_tool, prompt=caption_prompt, relevance_score=0.91
        )
        test_inputs = {"image_url": "https://example.com/office.jpg"}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Image Caption Generation Results" in mock_output
        assert "Primary Caption" in mock_output
        assert "Technical Analysis" in mock_output
        assert "Confidence Level" in mock_output
        assert "Alternative Descriptions" in mock_output
        assert "Generated by Image Caption Generator Tool" in mock_output

    @patch("agents.executor.random.random")
    def test_simulate_execution_generic_tool_output(self, mock_random, executor_agent):
        """Test generic mock output for unknown tool types."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        generic_tool = MCPTool(
            tool_id="unknown-tool",
            name="Unknown Analysis Tool",
            description="A tool for unknown analysis",
            tags=["unknown"],
            invocation_command_stub="unknown_analyze {input}",
        )
        generic_prompt = MCPPrompt(
            prompt_id="generic-prompt",
            name="Generic Processing",
            description="Generic prompt for unknown tool",
            target_tool_id="unknown-tool",
            template_string="Process: {{data}}",
            input_variables=["data"],
            difficulty_level="beginner",
        )
        planned_step = PlannedStep(
            tool=generic_tool, prompt=generic_prompt, relevance_score=0.75
        )
        test_inputs = {"data": "sample data"}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Execution Results for Unknown Analysis Tool" in mock_output
        assert "Successfully processed" in mock_output
        assert "Generic Processing" in mock_output
        assert "Input Analysis" in mock_output
        assert "data**: sample data" in mock_output

    @patch("agents.executor.random.random")
    def test_simulate_execution_empty_inputs(self, mock_random, executor_agent, sample_planned_step):
        """Test execution with empty inputs dictionary."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors
        empty_inputs: dict[str, str] = {}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, empty_inputs)

        # Assert
        assert result["status"] == "simulated_success"
        assert result["execution_details"]["inputs_received"] == empty_inputs
        assert result["execution_details"]["inputs_count"] == 0

    @staticmethod
    def test_simulate_execution_multiple_inputs(
        executor_agent, summarizer_tool, summary_prompt
    ):
        """Test execution with multiple input variables."""
        # Arrange
        planned_step = PlannedStep(
            tool=summarizer_tool, prompt=summary_prompt, relevance_score=0.85
        )
        test_inputs = {
            "document_text": "Very long document with lots of content...",
            "focus_area": "business insights and recommendations",
        }

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        assert result["execution_details"]["inputs_count"] == 2
        assert result["execution_details"]["inputs_received"] == test_inputs

    @staticmethod
    def test_simulate_execution_invalid_plan_type(executor_agent):
        """Test error handling with invalid plan type."""
        # Arrange
        invalid_plan = {"not": "a planned step"}
        test_inputs = {"input": "test"}

        # Act & Assert
        with pytest.raises(ValueError, match="Plan must be a PlannedStep instance"):
            executor_agent.simulate_execution(invalid_plan, test_inputs)

    @staticmethod
    def test_simulate_execution_invalid_inputs_type(
        executor_agent, sample_planned_step
    ):
        """Test error handling with invalid inputs type."""
        # Arrange
        invalid_inputs = "not a dictionary"

        # Act & Assert
        with pytest.raises(ValueError, match="Inputs must be a dictionary"):
            executor_agent.simulate_execution(sample_planned_step, invalid_inputs)

    @patch("agents.executor.random.random")
    @patch("agents.executor.logger")
    def test_simulate_execution_logging(
        self, mock_logger, mock_random, executor_agent, sample_planned_step
    ):
        """Test that execution logs appropriately."""
        # Arrange - Disable random errors to ensure consistent logging
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors
        test_inputs = {"text_content": "test content"}

        # Act
        executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert mock_logger.info.call_count >= 3  # 3 execution logs (init not captured by fixture)

        # Check specific log messages
        log_calls = [call[0][0] for call in mock_logger.info.call_args_list]
        assert any("Simulating execution for tool" in log for log in log_calls)
        assert any("Received inputs" in log for log in log_calls)
        assert any("Generated mock response" in log for log in log_calls)

    @patch("agents.executor.random.random")
    def test_execution_id_generation(
        self, mock_random, executor_agent, sample_planned_step
    ):
        """Test that unique execution IDs are generated."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        test_inputs_1 = {"text_content": "first input"}
        test_inputs_2 = {"text_content": "second input"}

        # Act
        result_1 = executor_agent.simulate_execution(sample_planned_step, test_inputs_1)
        result_2 = executor_agent.simulate_execution(sample_planned_step, test_inputs_2)

        # Assert
        assert result_1["execution_id"] != result_2["execution_id"]
        assert result_1["execution_id"].startswith("exec_sentiment-analyzer-v1_")
        assert result_2["execution_id"].startswith("exec_sentiment-analyzer-v1_")

    @staticmethod
    def test_confidence_score_consistency(executor_agent, sample_planned_step):
        """Test that confidence scores are consistent."""
        # Arrange
        test_inputs = {"text_content": "test content"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        confidence = result["results"]["confidence_score"]
        assert isinstance(confidence, int | float)
        assert 0.0 <= confidence <= 1.0

    @staticmethod
    def test_metadata_structure(executor_agent, sample_planned_step):
        """Test that metadata has expected structure."""
        # Arrange
        test_inputs = {"text_content": "test content"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        metadata = result["metadata"]
        assert "simulation_version" in metadata
        assert "timestamp" in metadata
        assert "notes" in metadata
        assert metadata["simulation_version"] == "MVP3_Sprint4"

    # Enhanced Input-Aware Mock Tests
    @patch("agents.executor.random.random")
    def test_text_summarizer_empty_input_handling(
        self, mock_random, executor_agent, summarizer_tool, summary_prompt
    ):
        """Test text summarizer with empty input returns appropriate error message."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        planned_step = PlannedStep(
            tool=summarizer_tool, prompt=summary_prompt, relevance_score=0.90
        )
        test_inputs = {"document_text": ""}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "No text content provided for summarization" in mock_output
        assert "⚠️ **Input Analysis:**" in mock_output
        assert "Recommendation: Please provide text content" in mock_output

    @patch("agents.executor.random.random")
    def test_text_summarizer_content_type_detection(
        self, mock_random, executor_agent, summarizer_tool, summary_prompt
    ):
        """Test text summarizer detects content type and generates appropriate response."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        planned_step = PlannedStep(
            tool=summarizer_tool, prompt=summary_prompt, relevance_score=0.90
        )

        # Test technical content
        tech_inputs = {
            "text": "This function implements a class variable to store programming code patterns."
        }

        # Act
        result = executor_agent.simulate_execution(planned_step, tech_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "technical content" in mock_output
        assert "Technical classification" in mock_output
        assert "code structure, functionality patterns" in mock_output

    @patch("agents.executor.random.random")
    def test_text_summarizer_business_content_detection(
        self, mock_random, executor_agent, summarizer_tool, summary_prompt
    ):
        """Test text summarizer detects business content correctly."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        planned_step = PlannedStep(
            tool=summarizer_tool, prompt=summary_prompt, relevance_score=0.90
        )

        business_inputs = {
            "content": "Our company's market analysis shows excellent customer retention and product sales growth in business sectors."
        }

        # Act
        result = executor_agent.simulate_execution(planned_step, business_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "business content" in mock_output
        assert "Business classification" in mock_output
        assert "market dynamics, customer insights" in mock_output

    @patch("agents.executor.random.random")
    def test_sentiment_analyzer_empty_input_handling(
        self, mock_random, executor_agent, sample_tool, sentiment_prompt
    ):
        """Test sentiment analyzer with empty input returns appropriate error message."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        planned_step = PlannedStep(
            tool=sample_tool, prompt=sentiment_prompt, relevance_score=0.88
        )
        test_inputs = {"text": ""}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "No text content provided for sentiment analysis" in mock_output
        assert "⚠️ **Input Analysis:**" in mock_output
        assert "Supported input fields:" in mock_output

    @patch("agents.executor.random.random")
    def test_sentiment_analyzer_positive_content_detection(
        self, mock_random, executor_agent, sample_tool, sentiment_prompt
    ):
        """Test sentiment analyzer correctly detects positive sentiment."""
        # Arrange
        mock_random.return_value = 0.9  # Disable random errors (15% threshold)
        planned_step = PlannedStep(
            tool=sample_tool, prompt=sentiment_prompt, relevance_score=0.88
        )
        positive_inputs = {
            "text": "This product is absolutely amazing and fantastic! I love it and highly recommend it."
        }

        # Act
        result = executor_agent.simulate_execution(planned_step, positive_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Primary**: Positive" in mock_output
        assert "Joy/Satisfaction:" in mock_output
        assert "**Positive Indicators**: 4 detected" in mock_output

    @patch("agents.executor.random.random")
    def test_sentiment_analyzer_negative_content_detection(
        self, mock_random, executor_agent, sample_tool, sentiment_prompt
    ):
        """Test sentiment analyzer correctly detects negative sentiment."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        planned_step = PlannedStep(
            tool=sample_tool, prompt=sentiment_prompt, relevance_score=0.88
        )
        negative_inputs = {
            "feedback": "This service was terrible and awful. I hate it and it's the worst experience ever."
        }

        # Act
        result = executor_agent.simulate_execution(planned_step, negative_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Primary**: Negative" in mock_output
        assert "Frustration:" in mock_output
        assert "**Negative Indicators**:" in mock_output
        assert "feedback" in mock_output  # Source field detection

    @patch("agents.executor.random.random")
    def test_sentiment_analyzer_neutral_content_detection(
        self, mock_random, executor_agent, sample_tool, sentiment_prompt
    ):
        """Test sentiment analyzer correctly detects neutral sentiment."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors

        planned_step = PlannedStep(
            tool=sample_tool, prompt=sentiment_prompt, relevance_score=0.88
        )
        neutral_inputs = {
            "message": "The weather today is okay and normal. It's fine and adequate for our needs."
        }

        # Act
        result = executor_agent.simulate_execution(planned_step, neutral_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Primary**: Neutral" in mock_output
        assert "Neutral:" in mock_output
        assert "**Neutral Indicators**:" in mock_output

    @patch("agents.executor.random.random")
    def test_image_caption_empty_input_handling(
        self, mock_random, executor_agent, image_caption_tool
    ):
        """Test image caption generator with empty input returns appropriate error message."""
        # Arrange
        mock_random.return_value = 0.9  # Disable random errors (15% threshold)
        caption_prompt = MCPPrompt(
            prompt_id="image-caption-001",
            name="Descriptive Image Caption",
            description="Generate detailed image captions",
            target_tool_id="image-captioner-ai",
            template_string="Caption this image: {{image_url}}",
            input_variables=["image_url"],
            difficulty_level="intermediate",
        )
        planned_step = PlannedStep(
            tool=image_caption_tool, prompt=caption_prompt, relevance_score=0.91
        )
        test_inputs = {"image_url": ""}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "No image source provided for caption generation" in mock_output
        assert "⚠️ **Input Analysis:**" in mock_output
        assert "Supported input fields:" in mock_output

    @patch("agents.executor.random.random")
    def test_image_caption_workspace_detection(
        self, mock_random, executor_agent, image_caption_tool
    ):
        """Test image caption generator detects workspace images correctly."""
        # Arrange
        mock_random.return_value = 0.9  # Disable random errors (15% threshold)
        caption_prompt = MCPPrompt(
            prompt_id="image-caption-001",
            name="Descriptive Image Caption",
            description="Generate detailed image captions",
            target_tool_id="image-captioner-ai",
            template_string="Caption this image: {{image_path}}",
            input_variables=["image_path"],
            difficulty_level="intermediate",
        )
        planned_step = PlannedStep(
            tool=image_caption_tool, prompt=caption_prompt, relevance_score=0.91
        )
        test_inputs = {"image_path": "/uploads/office_workspace_desk.jpg"}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "professional workspace" in mock_output
        assert "workspace" in mock_output.lower()
        assert "Indoor workspace/office environment" in mock_output
        assert "desk" in mock_output

    @patch("agents.executor.random.random")
    def test_image_caption_with_context(self, mock_random, executor_agent, image_caption_tool):
        """Test image caption generator incorporates additional context."""
        # Arrange
        mock_random.return_value = 0.9  # Disable random errors (15% threshold)
        caption_prompt = MCPPrompt(
            prompt_id="image-caption-001",
            name="Descriptive Image Caption",
            description="Generate detailed image captions",
            target_tool_id="image-captioner-ai",
            template_string="Caption this image: {{image}} with context: {{context}}",
            input_variables=["image", "context"],
            difficulty_level="intermediate",
        )
        planned_step = PlannedStep(
            tool=image_caption_tool, prompt=caption_prompt, relevance_score=0.91
        )
        test_inputs = {
            "image": "nature_photo.jpg",
            "context": "Taken during sunrise in the mountains",
        }

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "additional context: Taken during sunrise" in mock_output
        assert "Context Provided**: Yes" in mock_output
        assert "sunrise in the mountains" in mock_output

    @patch("agents.executor.random.random")
    def test_code_linter_empty_input_handling(self, mock_random, executor_agent, code_quality_tool):
        """Test code linter with empty input returns appropriate error message."""
        # Arrange - Disable random errors to ensure consistent behavior
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors
        code_prompt = MCPPrompt(
            prompt_id="code-quality-001",
            name="Comprehensive Code Review",
            description="Analyze code for quality and security",
            target_tool_id="code-quality-linter",
            template_string="Review this code: {{source_code}}",
            input_variables=["source_code"],
            difficulty_level="advanced",
        )
        planned_step = PlannedStep(
            tool=code_quality_tool, prompt=code_prompt, relevance_score=0.87
        )
        test_inputs = {"source_code": ""}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "No code content provided for analysis" in mock_output
        assert "⚠️ **Input Analysis:**" in mock_output
        assert "Supported input fields:" in mock_output

    @patch("agents.executor.random.random")
    def test_code_linter_python_detection(self, mock_random, executor_agent, code_quality_tool):
        """Test code linter correctly detects Python code."""
        # Arrange - Disable random errors to ensure consistent behavior
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors
        code_prompt = MCPPrompt(
            prompt_id="code-quality-001",
            name="Comprehensive Code Review",
            description="Analyze code for quality and security",
            target_tool_id="code-quality-linter",
            template_string="Review this code: {{code}}",
            input_variables=["code"],
            difficulty_level="advanced",
        )
        planned_step = PlannedStep(
            tool=code_quality_tool, prompt=code_prompt, relevance_score=0.87
        )
        python_code = """
def hello_world():
    \"\"\"Print hello world message.\"\"\"
    print("Hello, World!")
    return True

class MyClass:
    def __init__(self):
        pass
"""
        test_inputs = {"code": python_code}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Language**: Python" in mock_output
        assert "Lines Analyzed**: " in mock_output
        assert "def hello_world():" in mock_output  # Code preview

    @patch("agents.executor.random.random")
    def test_code_linter_issue_detection(self, mock_random, executor_agent, code_quality_tool):
        """Test code linter detects common code issues."""
        # Arrange - Disable random errors
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors
        code_prompt = MCPPrompt(
            prompt_id="code-quality-001",
            name="Comprehensive Code Review",
            description="Analyze code for quality and security",
            target_tool_id="code-quality-linter",
            template_string="Review this code: {{script}}",
            input_variables=["script"],
            difficulty_level="advanced",
        )
        planned_step = PlannedStep(
            tool=code_quality_tool, prompt=code_prompt, relevance_score=0.87
        )
        problematic_code = """
# TODO: Fix this function
def bad_function():
    x = 1


    y = 2
    z = very_long_variable_name_that_exceeds_normal_line_length_and_should_be_flagged_as_an_issue_by_linter = 3
    return x + y + z
"""
        test_inputs = {"script": problematic_code}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Todo/Fixme comments found" in mock_output
        assert "Long lines detected" in mock_output
        assert "Issues Found**: " in mock_output

    @patch("agents.executor.random.random")
    def test_generic_tool_input_analysis(self, mock_random, executor_agent):
        """Test generic tool provides detailed input analysis."""
        # Arrange - Disable random errors to ensure consistent behavior
        mock_random.return_value = 0.5  # Above 0.1 threshold, no random errors
        custom_tool = MCPTool(
            tool_id="custom-analyzer",
            name="Custom Analysis Tool",
            description="Performs custom data analysis",
            tags=["analysis"],
            invocation_command_stub="analyze {input}",
        )
        custom_prompt = MCPPrompt(
            prompt_id="custom-prompt",
            name="Custom Analysis",
            description="Custom analysis prompt",
            target_tool_id="custom-analyzer",
            template_string="Analyze: {{data}} with {{method}}",
            input_variables=["data", "method"],
            difficulty_level="intermediate",
        )
        planned_step = PlannedStep(
            tool=custom_tool, prompt=custom_prompt, relevance_score=0.82
        )

        test_inputs = {
            "data": "Large dataset with complex information patterns and detailed analysis requirements",
            "method": "statistical",
        }

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert (
            "Processing Complexity**: Simple" in mock_output
        )  # Based on total input length
        assert "Inputs Received**: 2 parameter(s)" in mock_output
        assert "Total Content Length**:" in mock_output
        assert (
            "data**: Large dataset with complex" in mock_output
        )  # Check partial match without ellipsis
        assert "method**: statistical" in mock_output

    @patch("agents.executor.random.random")
    def test_long_input_processing(self, mock_random, executor_agent, sample_tool, sentiment_prompt):
        """Test processing of very long input content."""
        # Arrange
        mock_random.return_value = 0.9  # Disable random errors (15% threshold)
        planned_step = PlannedStep(
            tool=sample_tool, prompt=sentiment_prompt, relevance_score=0.88
        )

        # Create long input content
        long_text = "This is an excellent service. " * 50  # 1500+ characters
        test_inputs = {"text_content": long_text}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        mock_output = result["results"]["mock_output"]
        assert "Primary**: Positive" in mock_output  # Should detect positive sentiment
        assert "Text Length**: " in mock_output
        assert "Analysis Confidence" in mock_output


class TestErrorSimulation:
    """Test suite for error simulation functionality."""

    @pytest.fixture
    def executor_agent(self) -> StubExecutorAgent:
        """Create a StubExecutorAgent instance for testing."""
        return StubExecutorAgent()

    @pytest.fixture
    def sample_tool(self) -> MCPTool:
        """Create a sample MCPTool for testing."""
        return MCPTool(
            tool_id="test-tool-error",
            name="Test Error Tool",
            description="A tool for testing error scenarios",
            tags=["test", "error"],
            invocation_command_stub="test_error {input}",
        )

    @pytest.fixture
    def sample_prompt(self) -> MCPPrompt:
        """Create a sample MCPPrompt for testing."""
        return MCPPrompt(
            prompt_id="test-prompt-error",
            name="Test Error Prompt",
            description="A prompt for testing error scenarios",
            target_tool_id="test-tool-error",
            template_string="Process: {{text_input}}",
            input_variables=["text_input"],
            difficulty_level="beginner",
        )

    @pytest.fixture
    def sample_planned_step(
        self, sample_tool: MCPTool, sample_prompt: MCPPrompt
    ) -> PlannedStep:
        """Create a sample PlannedStep for testing."""
        return PlannedStep(tool=sample_tool, prompt=sample_prompt, relevance_score=0.95)

    @staticmethod
    def test_user_requested_error_simulation(executor_agent, sample_planned_step):
        """Test error simulation triggered by user input containing error keywords."""
        # Arrange
        test_inputs = {"text_input": "This should fail and show an error"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"

        error_info = result["error_information"]
        assert error_info["error_type"] == "user_requested"
        assert error_info["error_code"] == "USR_REQ_001"
        assert error_info["retry_recommended"] is True
        assert (
            "User explicitly requested error simulation" in error_info["error_message"]
        )

        # Check that the output contains user-friendly error message
        mock_output = result["results"]["mock_output"]
        assert "Error Simulation Activated" in mock_output
        assert "User-Requested Error" in mock_output

    @staticmethod
    def test_test_scenario_error_simulation(executor_agent, sample_planned_step):
        """Test error simulation triggered by test scenario keywords."""
        # Arrange
        test_inputs = {"text_input": "test error scenario for validation"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"

        error_info = result["error_information"]
        assert error_info["error_type"] == "test_scenario"
        assert error_info["error_code"] == "TST_ERR_001"
        assert error_info["retry_recommended"] is True

        mock_output = result["results"]["mock_output"]
        assert "Test Error Scenario" in mock_output
        assert "Error Simulation Active" in mock_output

    @staticmethod
    def test_input_too_large_error_simulation(
        executor_agent, sample_planned_step
    ):
        """Test error simulation for input size limits."""
        # Arrange - Create input larger than 10,000 characters
        large_input = "x" * 10001
        test_inputs = {"text_input": large_input}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"

        error_info = result["error_information"]
        assert error_info["error_type"] == "input_too_large"
        assert error_info["error_code"] == "VAL_001"
        assert error_info["retry_recommended"] is True
        assert "10001 characters" in error_info["error_details"]

        mock_output = result["results"]["mock_output"]
        assert "Input Size Error" in mock_output
        assert "Input Too Large" in mock_output

    @staticmethod
    def test_security_violation_error_simulation(
        executor_agent, sample_planned_step
    ):
        """Test error simulation for security violations."""
        # Arrange
        test_inputs = {
            "text_input": "Process this <script>alert('hack')</script> content"
        }

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"

        error_info = result["error_information"]
        assert error_info["error_type"] == "security_violation"
        assert error_info["error_code"] == "SEC_001"
        assert error_info["retry_recommended"] is False

        mock_output = result["results"]["mock_output"]
        assert "Security Error" in mock_output
        assert "Security Violation Detected" in mock_output

    @staticmethod
    def test_corrupted_file_error_for_image_tool(executor_agent):
        """Test error simulation for corrupted files in image tools."""
        # Arrange
        image_tool = MCPTool(
            tool_id="image_caption_003",
            name="Image Caption Generator",
            description="Generate captions for images",
            tags=["image", "ai"],
            invocation_command_stub="caption_image {image}",
        )
        image_prompt = MCPPrompt(
            prompt_id="caption-prompt",
            name="Image Captioning",
            description="Caption an image",
            target_tool_id="image_caption_003",
            template_string="Caption: {{image_file}}",
            input_variables=["image_file"],
            difficulty_level="beginner",
        )
        planned_step = PlannedStep(
            tool=image_tool, prompt=image_prompt, relevance_score=0.85
        )

        test_inputs = {"image_file": "broken_image.jpg"}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"

        error_info = result["error_information"]
        assert error_info["error_type"] == "corrupted_file"
        assert error_info["error_code"] == "FILE_001"
        assert error_info["retry_recommended"] is True

        mock_output = result["results"]["mock_output"]
        assert "File Processing Error" in mock_output
        assert "Corrupted File Detected" in mock_output

    @staticmethod
    def test_wrong_file_type_error_for_image_tool(executor_agent):
        """Test error simulation for wrong file types in image tools."""
        # Arrange
        image_tool = MCPTool(
            tool_id="image_caption_003",
            name="Image Caption Generator",
            description="Generate captions for images",
            tags=["image", "ai"],
            invocation_command_stub="caption_image {image}",
        )
        image_prompt = MCPPrompt(
            prompt_id="caption-prompt",
            name="Image Captioning",
            description="Caption an image",
            target_tool_id="image_caption_003",
            template_string="Caption: {{image_file}}",
            input_variables=["image_file"],
            difficulty_level="beginner",
        )
        planned_step = PlannedStep(
            tool=image_tool, prompt=image_prompt, relevance_score=0.85
        )

        test_inputs = {"image_file": "document.txt"}

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"

        error_info = result["error_information"]
        assert error_info["error_type"] == "wrong_file_type"
        assert error_info["error_code"] == "FILE_002"
        assert error_info["retry_recommended"] is True

        mock_output = result["results"]["mock_output"]
        assert "File Type Error" in mock_output
        assert "Unsupported File Type" in mock_output

    @patch("agents.executor.random.random")
    def test_random_error_simulation(
        self, mock_random, executor_agent, sample_planned_step
    ):
        """Test random error simulation."""
        # Arrange - Force random error (10% chance normally)
        mock_random.return_value = 0.05  # Less than 0.1, should trigger random error

        test_inputs = {"text_input": "normal input"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert - Should get a random error
        assert result["status"] == "simulated_error"

        error_info = result["error_information"]
        assert error_info["error_type"] in [
            "network_timeout",
            "service_unavailable",
            "rate_limit_exceeded",
            "temporary_overload",
        ]
        assert error_info["retry_recommended"] is True

    @patch("agents.executor.random.random")
    def test_no_random_error_simulation(
        self, mock_random, executor_agent, sample_planned_step
    ):
        """Test that random errors don't trigger when probability is too high."""
        # Arrange - Prevent random error
        mock_random.return_value = (
            0.15  # Greater than 0.1, should not trigger random error
        )

        test_inputs = {"text_input": "normal input"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert - Should get normal success
        assert result["status"] == "simulated_success"
        assert "error_information" not in result

    @staticmethod
    def test_error_response_structure(executor_agent, sample_planned_step):
        """Test that error responses have the correct structure."""
        # Arrange
        test_inputs = {"text_input": "trigger error simulation"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert - Check error response structure
        assert result["status"] == "simulated_error"

        # Check required top-level keys
        expected_keys = [
            "status",
            "execution_id",
            "tool_information",
            "prompt_information",
            "execution_details",
            "error_information",
            "results",
            "metadata",
        ]
        for key in expected_keys:
            assert key in result, f"Missing key: {key}"

        # Check error_information structure
        error_info = result["error_information"]
        error_keys = [
            "error_type",
            "error_severity",
            "error_code",
            "error_message",
            "error_details",
            "suggested_fixes",
            "retry_recommended",
        ]
        for key in error_keys:
            assert key in error_info, f"Missing error info key: {key}"

        # Check execution details for errors
        exec_details = result["execution_details"]
        assert "error_occurred_at" in exec_details
        assert isinstance(exec_details["error_occurred_at"], int)
        assert 10 <= exec_details["error_occurred_at"] <= 80

    @staticmethod
    def test_error_execution_time_shorter(executor_agent, sample_planned_step):
        """Test that error scenarios have shorter execution times."""
        # Arrange
        test_inputs = {"text_input": "simulate error"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"
        execution_time = result["execution_details"]["execution_time_ms"]

        # Error execution times should be between 100-1000ms (shorter than success 800-2500ms)
        assert 100 <= execution_time <= 1000

    @staticmethod
    def test_error_confidence_score_zero(executor_agent, sample_planned_step):
        """Test that error responses have zero confidence score."""
        # Arrange
        test_inputs = {"text_input": "error test"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"
        assert result["results"]["confidence_score"] == 0.0

    @staticmethod
    def test_error_logging(executor_agent, sample_planned_step):
        """Test that error scenarios are properly logged."""
        # Arrange
        test_inputs = {"text_input": "error logging test"}

        # Act
        with patch("agents.executor.logger") as mock_logger:
            result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"

        # Check that warning was logged for the error
        mock_logger.warning.assert_called_once()
        warning_call = mock_logger.warning.call_args[0][0]
        assert "Simulated" in warning_call
        assert "error" in warning_call

    @staticmethod
    def test_high_severity_error_priority(executor_agent):
        """Test that high severity errors are prioritized over lower severity ones."""
        # Arrange - Create inputs that would trigger both high and medium severity errors
        test_inputs = {
            "text_input": "error with <script>alert('test')</script> content"
        }

        tool = MCPTool(
            tool_id="test-tool",
            name="Test Tool",
            description="Test tool",
            tags=["test"],
            invocation_command_stub="test {input}",
        )
        prompt = MCPPrompt(
            prompt_id="test-prompt",
            name="Test Prompt",
            description="Test prompt",
            target_tool_id="test-tool",
            template_string="Process: {{text_input}}",
            input_variables=["text_input"],
            difficulty_level="beginner",
        )
        planned_step = PlannedStep(tool=tool, prompt=prompt, relevance_score=0.95)

        # Act
        result = executor_agent.simulate_execution(planned_step, test_inputs)

        # Assert - Should get the high severity security violation, not the medium severity user_requested error
        assert result["status"] == "simulated_error"

        error_info = result["error_information"]
        assert error_info["error_type"] == "security_violation"  # High severity
        assert error_info["error_severity"] == "high"

    @staticmethod
    def test_error_metadata_tracking(executor_agent, sample_planned_step):
        """Test that error metadata is properly tracked."""
        # Arrange
        test_inputs = {"text_input": "error metadata test"}

        # Act
        result = executor_agent.simulate_execution(sample_planned_step, test_inputs)

        # Assert
        assert result["status"] == "simulated_error"

        metadata = result["metadata"]
        assert metadata["error_simulation"] == "user_requested"
        assert metadata["simulation_version"] == "MVP3_Sprint4"
        assert "trigger_info" in metadata
        assert len(metadata["trigger_info"]) <= 100  # Should be truncated to 100 chars


class TestMcpExecutorAgentEnhancedErrorHandling:
    """Test enhanced error handling in McpExecutorAgent for MVP4 Sprint 2."""

    @pytest.fixture
    def executor_agent(self) -> McpExecutorAgent:
        """Create a McpExecutorAgent instance for testing."""
        return McpExecutorAgent()

    @pytest.fixture
    def mcp_tool(self) -> MCPTool:
        """Create an MCP tool for testing."""
        return MCPTool(
            tool_id="test-mcp-tool",
            name="Test MCP Tool",
            description="A tool for testing MCP integration",
            execution_type="remote_mcp_gradio",
            mcp_endpoint_url="https://test-mcp-server.hf.space/mcp",
            timeout_seconds=30,
        )

    @pytest.fixture
    def sample_prompt(self) -> MCPPrompt:
        """Create a sample MCPPrompt for testing."""
        return MCPPrompt(
            prompt_id="test-prompt",
            name="Test Prompt",
            description="A prompt for testing",
            target_tool_id="test-mcp-tool",
            template_string="Process: {{text_input}}",
            input_variables=["text_input"],
            difficulty_level="beginner",
        )

    @pytest.fixture
    def planned_step(self, mcp_tool: MCPTool, sample_prompt: MCPPrompt) -> PlannedStep:
        """Create a PlannedStep for testing."""
        return PlannedStep(tool=mcp_tool, prompt=sample_prompt, relevance_score=0.95)

    @staticmethod
    def test_retry_mechanism_for_server_errors(executor_agent, planned_step):
        """Test that server errors (5xx) trigger retry logic."""
        inputs = {"text_input": "test input"}

        # Mock responses: first two fail with 503, third succeeds
        mock_responses = [
            Mock(status_code=503, text="Service Unavailable"),
            Mock(status_code=503, text="Service Unavailable"),
            Mock(status_code=200)
        ]

        # Configure the first two to raise HTTPError, third to succeed
        mock_responses[0].raise_for_status.side_effect = requests.exceptions.HTTPError(response=mock_responses[0])
        mock_responses[1].raise_for_status.side_effect = requests.exceptions.HTTPError(response=mock_responses[1])
        mock_responses[2].raise_for_status.return_value = None
        mock_responses[2].json.return_value = {"data": ["Success after retry!"]}

        with patch("agents.executor.time.sleep"), \
             patch.object(executor_agent.http_session, "post", side_effect=mock_responses):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        # Should succeed after retries
        assert result["status"] == "success_live_mcp"
        assert result["attempts_made"] == 3
        assert "Success after retry!" in result["tool_specific_output"]

    @staticmethod
    def test_retry_mechanism_for_timeouts(executor_agent, planned_step):
        """Test that timeouts trigger retry logic."""
        inputs = {"text_input": "test input"}

        # Mock timeout on first two attempts, success on third
        side_effects = [
            requests.exceptions.Timeout(),
            requests.exceptions.Timeout(),
            Mock(status_code=200)
        ]

        # Configure successful response
        success_response = side_effects[2]
        success_response.raise_for_status.return_value = None
        success_response.json.return_value = {"data": ["Success after timeout retries!"]}

        with patch("agents.executor.time.sleep"), \
             patch.object(executor_agent.http_session, "post", side_effect=side_effects):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        # Should succeed after retries
        assert result["status"] == "success_live_mcp"
        assert result["attempts_made"] == 3
        assert "Success after timeout retries!" in result["tool_specific_output"]

    @staticmethod
    def test_no_retry_for_client_errors(executor_agent, planned_step):
        """Test that client errors (4xx) don't trigger retries."""
        inputs = {"text_input": "test input"}

        mock_response = Mock(status_code=400, text="Bad Request")
        mock_response.raise_for_status.side_effect = requests.exceptions.HTTPError(response=mock_response)

        with patch.object(executor_agent.http_session, "post", return_value=mock_response):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        # Should fail immediately without retries
        assert result["status"] == "error_live_mcp_http"
        assert result["error_details"]["attempts_made"] == 1
        assert result["error_information"]["error_category"] == "input_validation"

    @staticmethod
    def test_enhanced_error_categorization(executor_agent, planned_step):
        """Test that errors are properly categorized."""
        inputs = {"text_input": "test input"}

        # Test different HTTP status codes
        test_cases = [
            (429, "rate_limit"),
            (503, "server_error"),
            (401, "authentication"),
            (400, "input_validation"),
            (404, "not_found"),
        ]

        for status_code, expected_category in test_cases:
            mock_response = Mock(status_code=status_code, text="Error")
            mock_response.raise_for_status.side_effect = requests.exceptions.HTTPError(response=mock_response)

            with patch.object(executor_agent.http_session, "post", return_value=mock_response):
                result = executor_agent.execute_plan_step(planned_step, inputs)

            assert result["error_information"]["error_category"] == expected_category

    @staticmethod
    def test_recovery_suggestions_for_different_errors(executor_agent, planned_step):
        """Test that appropriate recovery suggestions are provided."""
        inputs = {"text_input": "test input"}

        # Test rate limit error
        mock_response = Mock(status_code=429, text="Rate Limited")
        mock_response.raise_for_status.side_effect = requests.exceptions.HTTPError(response=mock_response)

        with patch.object(executor_agent.http_session, "post", return_value=mock_response):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        suggestions = result["error_information"]["recovery_suggestions"]
        assert any("wait" in suggestion.lower() for suggestion in suggestions)
        assert any("rate limit" in suggestion.lower() for suggestion in suggestions)

    @staticmethod
    def test_connection_error_handling(executor_agent, planned_step):
        """Test handling of connection errors with retry logic."""
        inputs = {"text_input": "test input"}

        # Mock connection errors on first two attempts, success on third
        side_effects = [
            requests.exceptions.ConnectionError("Connection failed"),
            requests.exceptions.ConnectionError("Connection failed"),
            Mock(status_code=200)
        ]

        # Configure successful response
        success_response = side_effects[2]
        success_response.raise_for_status.return_value = None
        success_response.json.return_value = {"data": ["Success after connection retries!"]}

        with patch("agents.executor.time.sleep"), \
             patch.object(executor_agent.http_session, "post", side_effect=side_effects):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        # Should succeed after retries
        assert result["status"] == "success_live_mcp"
        assert result["attempts_made"] == 3

    @staticmethod
    def test_max_retries_exhausted(executor_agent, planned_step):
        """Test behavior when max retries are exhausted."""
        inputs = {"text_input": "test input"}

        # Mock persistent timeout
        with patch.object(executor_agent.http_session, "post", side_effect=requests.exceptions.Timeout()):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        # Should fail after max retries
        assert result["status"] == "error_live_mcp_timeout"
        assert result["error_details"]["attempts_made"] == 3  # 1 + 2 retries
        assert result["error_information"]["retry_recommended"] is True

    @staticmethod
    def test_json_parsing_error_handling(executor_agent, planned_step):
        """Test handling of JSON parsing errors."""
        inputs = {"text_input": "test input"}

        mock_response = Mock(status_code=200, text="Invalid JSON Response")
        mock_response.raise_for_status.return_value = None
        mock_response.json.side_effect = json.JSONDecodeError("Invalid JSON", "doc", 0)

        with patch.object(executor_agent.http_session, "post", return_value=mock_response):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        assert result["status"] == "error_mcp_response_parsing"
        assert result["error_information"]["error_category"] == "data"
        assert "Invalid JSON Response" in result["error_details"]["response_preview"]

    @staticmethod
    def test_invalid_response_format_handling(executor_agent, planned_step):
        """Test handling of invalid MCP response format."""
        inputs = {"text_input": "test input"}

        mock_response = Mock(status_code=200)
        mock_response.raise_for_status.return_value = None
        mock_response.json.return_value = {"error": "No data field"}  # Missing 'data' field

        with patch.object(executor_agent.http_session, "post", return_value=mock_response):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        assert result["status"] == "error_mcp_response_parsing"
        assert "No 'data' field" in result["error_details"]["parse_error"]

    @staticmethod
    def test_empty_data_array_handling(executor_agent, planned_step):
        """Test handling of empty data array in response."""
        inputs = {"text_input": "test input"}

        mock_response = Mock(status_code=200)
        mock_response.raise_for_status.return_value = None
        mock_response.json.return_value = {"data": []}  # Empty data array

        with patch.object(executor_agent.http_session, "post", return_value=mock_response):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        assert result["status"] == "error_mcp_response_parsing"
        assert "Empty 'data' array" in result["error_details"]["parse_error"]

    @staticmethod
    def test_enhanced_error_response_format(executor_agent, planned_step):
        """Test that enhanced error responses contain all required fields."""
        inputs = {"text_input": "test input"}

        mock_response = Mock(status_code=503, text="Service Unavailable")
        mock_response.raise_for_status.side_effect = requests.exceptions.HTTPError(response=mock_response)

        with patch.object(executor_agent.http_session, "post", return_value=mock_response):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        # Check required fields in error response
        assert "error_information" in result
        error_info = result["error_information"]

        required_fields = [
            "error_category", "error_type", "error_message",
            "recovery_suggestions", "retry_recommended",
            "user_action_required", "timestamp"
        ]

        for field in required_fields:
            assert field in error_info, f"Missing required field: {field}"

        # Check error details
        assert "error_details" in result
        error_details = result["error_details"]
        assert "status_code" in error_details
        assert "endpoint" in error_details
        assert "attempts_made" in error_details

    @staticmethod
    def test_successful_mcp_call_with_enhanced_response(executor_agent, planned_step):
        """Test successful MCP call returns enhanced response format."""
        inputs = {"text_input": "test input"}

        mock_response = Mock(status_code=200)
        mock_response.raise_for_status.return_value = None
        mock_response.json.return_value = {"data": ["Successful response!"]}

        with patch.object(executor_agent.http_session, "post", return_value=mock_response):
            result = executor_agent.execute_plan_step(planned_step, inputs)

        # Check enhanced success response
        assert result["status"] == "success_live_mcp"
        assert result["execution_mode"] == "live_mcp"
        assert result["attempts_made"] == 1
        assert result["mcp_endpoint"] == planned_step.tool.mcp_endpoint_url
        assert "✅ Successfully executed" in result["message"]

    @staticmethod
    def test_unknown_execution_type_error(executor_agent, sample_prompt):
        """Test handling of unknown execution type falls back to simulation."""
        
        # Create tool with invalid execution type by bypassing validation
        with patch.object(MCPTool, "__post_init__", return_value=None):
            invalid_tool = MCPTool(
                tool_id="invalid-tool",
                name="Invalid Tool",
                description="Tool with invalid execution type",
                execution_type="invalid_type",
            )

        # Create planned step with patched tool
        with patch.object(PlannedStep, "__post_init__", return_value=None):
            invalid_planned_step = PlannedStep(
                tool=invalid_tool,
                prompt=sample_prompt,
                relevance_score=0.5
            )

        inputs = {"text_input": "test input"}

        # Mock random functions to prevent error simulation
        with patch('agents.executor.random.random', return_value=0.5), \
             patch('agents.executor.random.choice', return_value="timeout"), \
             patch('agents.executor.random.randint', return_value=50), \
             patch('agents.executor.random.uniform', return_value=0.8):
            result = executor_agent.execute_plan_step(invalid_planned_step, inputs)

        # With improved fallback logic, unknown execution types should fall back to simulation
        assert result["status"] == "simulated_success"
        assert result["execution_mode"] == "simulated"
        # Should include fallback information in metadata
        assert "fallback_reason" in result["metadata"] or "execution_type" in result["metadata"]

    @staticmethod
    def test_retry_delay_timing(executor_agent, planned_step):
        """Test that retry delays are properly implemented."""
        inputs = {"text_input": "test input"}

        with patch("agents.executor.time.sleep") as mock_sleep, \
             patch.object(executor_agent.http_session, "post", side_effect=requests.exceptions.Timeout()):

            start_time = time.time()
            result = executor_agent.execute_plan_step(planned_step, inputs)

            # Should have called sleep twice (for 2 retries)
            assert mock_sleep.call_count == 2
            # Should have called with correct delay
            mock_sleep.assert_called_with(executor_agent.retry_delay)

    @staticmethod
    def test_error_message_user_friendliness(executor_agent, planned_step):
        """Test that error messages are user-friendly and informative."""
        inputs = {"text_input": "test input"}

        test_cases = [
            (429, "Rate limit exceeded"),
            (503, "Service temporarily unavailable"),
            (500, "Server error"),
            (400, "Client error"),
        ]

        for status_code, expected_message_part in test_cases:
            mock_response = Mock(status_code=status_code, text="Error details")
            mock_response.raise_for_status.side_effect = requests.exceptions.HTTPError(response=mock_response)

            with patch.object(executor_agent.http_session, "post", return_value=mock_response):
                result = executor_agent.execute_plan_step(planned_step, inputs)

            assert expected_message_part.lower() in result["message"].lower()