File size: 40,946 Bytes
1f2d50a 64ced8b 1f2d50a 64ced8b 1f2d50a 65be7f3 1f2d50a 64ced8b 1f2d50a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
#!/usr/bin/env python3
"""End-to-End Testing for Real MCP Execution Flow.
This module implements comprehensive end-to-end testing for Task 65: MVP4 Sprint 3 - End to End Testing.
It covers the complete flow from user query to real MCP tool execution, including:
- Full workflow: Query → Planning → Input Collection → Real MCP Execution
- Live MCP server communication testing
- Error handling and fallback scenarios
- Performance and reliability testing
- Integration testing across all system components
This test suite validates that the complete KGraph-MCP system works end-to-end
with real MCP servers running on localhost.
"""
import time
from typing import Any
from unittest.mock import Mock, patch
import pytest
import requests
from fastapi.testclient import TestClient
from agents.executor import McpExecutorAgent
from app import app, app_with_ui, initialize_agent_system
from kg_services.ontology import MCPPrompt, MCPTool, PlannedStep
class TestE2EMcpExecutionFlow:
"""Test complete end-to-end MCP execution workflows."""
@pytest.fixture
def client(self):
"""Provide test client with initialized system."""
return TestClient(app)
@pytest.fixture
def initialized_system(self):
"""Provide fully initialized system with real agents."""
import app as app_module
planner, executor = initialize_agent_system()
app_module.planner_agent = planner
app_module.executor_agent = executor
return {
"planner": planner,
"executor": executor,
"client": TestClient(app_with_ui)
}
@pytest.fixture
def mcp_executor(self):
"""Provide McpExecutorAgent for direct testing."""
return McpExecutorAgent()
def test_complete_sentiment_analysis_mcp_flow(self, initialized_system):
"""Test complete flow: query → plan → real MCP execution for sentiment analysis."""
client = initialized_system["client"]
# Skip if system not initialized
if initialized_system["planner"] is None:
pytest.skip("Agent system not initialized - missing data files or API keys")
# Step 1: Submit sentiment analysis query
plan_request = {
"query": "I need to analyze the sentiment of customer feedback about our new product",
"top_k": 3
}
response = client.post("/api/plan/generate", json=plan_request)
# Handle case where system is not properly initialized (503 error)
if response.status_code == 503:
pytest.skip("Agent system not available - check initialization and API keys")
assert response.status_code == 200
plan_data = response.json()
# Check if response has error status due to missing embeddings
if "detail" in plan_data:
pytest.skip(f"System error: {plan_data['detail']}")
assert plan_data["status"] == "success"
assert len(plan_data["planned_steps"]) > 0
# Step 2: Find sentiment analysis tool in the plan
sentiment_step = None
for step in plan_data["planned_steps"]:
tool_name = step["tool"]["name"].lower()
tool_desc = step["tool"]["description"].lower()
if "sentiment" in tool_name or "sentiment" in tool_desc:
sentiment_step = step
break
assert sentiment_step is not None, "No sentiment analysis tool found in plan"
# Step 3: Verify the tool is configured for real MCP execution
tool_info = sentiment_step["tool"]
assert tool_info.get("execution_type") == "remote_mcp_gradio"
assert tool_info.get("mcp_endpoint_url") is not None
# Step 4: Test real MCP execution (if server is available)
if self._is_mcp_server_available(tool_info["mcp_endpoint_url"]):
# Create PlannedStep for execution
planned_step = self._create_planned_step_from_api_response(sentiment_step)
# Prepare realistic input
test_inputs = {
"input_text": "This new product is absolutely amazing! I love how easy it is to use and the quality is outstanding. Highly recommend!"
}
# Execute with real MCP
executor = initialized_system["executor"]
if hasattr(executor, "execute_plan_step"):
result = executor.execute_plan_step(planned_step, test_inputs)
# Verify successful real MCP execution
assert result["status"] == "success_live_mcp"
assert "tool_specific_output" in result
assert result["execution_mode"] == "live_mcp"
assert "mcp_endpoint" in result
# Verify output contains sentiment analysis results
output = result["tool_specific_output"]
assert output is not None
assert len(output) > 0
print(f"✅ Real MCP Sentiment Analysis Result: {output[:200]}...")
else:
pytest.skip("Executor doesn't support real MCP execution")
else:
pytest.skip(f"MCP server not available at {tool_info['mcp_endpoint_url']}")
def test_complete_text_summarization_mcp_flow(self, initialized_system):
"""Test complete flow: query → plan → real MCP execution for text summarization."""
client = initialized_system["client"]
if initialized_system["planner"] is None:
pytest.skip("Agent system not initialized")
# Step 1: Submit summarization query
plan_request = {
"query": "I need to summarize a long technical document for my team meeting",
"top_k": 3
}
response = client.post("/api/plan/generate", json=plan_request)
# Handle case where system is not properly initialized
if response.status_code == 503:
pytest.skip("Agent system not available - check initialization and API keys")
assert response.status_code == 200
plan_data = response.json()
# Check if response has error status
if "detail" in plan_data:
pytest.skip(f"System error: {plan_data['detail']}")
assert plan_data["status"] == "success"
# Step 2: Find text summarization tool
summarizer_step = None
for step in plan_data["planned_steps"]:
tool_name = step["tool"]["name"].lower()
tool_desc = step["tool"]["description"].lower()
if "summar" in tool_name or "summar" in tool_desc:
summarizer_step = step
break
assert summarizer_step is not None, "No text summarization tool found in plan"
# Step 3: Test real MCP execution if server available
tool_info = summarizer_step["tool"]
if (tool_info.get("execution_type") == "remote_mcp_gradio" and
self._is_mcp_server_available(tool_info["mcp_endpoint_url"])):
planned_step = self._create_planned_step_from_api_response(summarizer_step)
# Prepare realistic long text input
long_text = """
Artificial Intelligence (AI) has revolutionized numerous industries and continues to shape the future of technology.
Machine learning algorithms, particularly deep learning neural networks, have achieved remarkable breakthroughs in
computer vision, natural language processing, and predictive analytics. These advancements have enabled applications
ranging from autonomous vehicles and medical diagnosis to personalized recommendations and automated customer service.
The integration of AI into business processes has led to increased efficiency, reduced costs, and improved decision-making
capabilities. Companies across various sectors are leveraging AI to optimize operations, enhance customer experiences,
and gain competitive advantages. However, the rapid adoption of AI also raises important considerations regarding ethics,
privacy, and the future of work.
As AI technology continues to evolve, it is crucial for organizations to develop comprehensive strategies for responsible
AI implementation, ensuring that these powerful tools are used to benefit society while mitigating potential risks and
challenges. The future of AI promises even more sophisticated applications and transformative impacts across all aspects
of human life and business operations.
"""
test_inputs = {
"text": long_text.strip(),
"max_length": "100",
"min_length": "50"
}
executor = initialized_system["executor"]
if hasattr(executor, "execute_plan_step"):
result = executor.execute_plan_step(planned_step, test_inputs)
# Handle cold start scenarios gracefully - accept both live success and simulation fallback
if result["status"] == "success_live_mcp":
# Preferred: Live MCP execution succeeded
assert "tool_specific_output" in result
assert result["execution_mode"] == "live_mcp"
output = result["tool_specific_output"]
assert output is not None
assert len(output) > 0
print(f"✅ Real MCP Summarization Result: {output[:200]}...")
elif result["status"] == "simulated_success":
# Acceptable: Fell back to simulation due to cold start/timeout
assert "tool_specific_output" in result
assert result["execution_mode"] == "simulated"
output = result["tool_specific_output"]
assert output is not None
assert len(output) > 0
print(f"✅ Simulated Summarization Result (cold start fallback): {output[:200]}...")
elif result["status"].startswith("error_live_mcp") and "timeout" in result.get("message", "").lower():
# Acceptable: HuggingFace Space cold start timeout - this is normal for serverless deployments
print(f"✅ Expected HuggingFace Space cold start timeout: {result.get('message', 'timeout')[:100]}...")
pytest.skip("HuggingFace Space experiencing cold start timeout - normal for serverless deployments")
else:
# Unexpected error
pytest.fail(f"Unexpected execution result: {result['status']} - {result.get('message', 'No message')}")
# Verify summary output characteristics (regardless of execution mode)
output = result["tool_specific_output"]
assert len(output) < len(long_text) # Should be shorter than input
else:
pytest.skip("Executor doesn't support real MCP execution")
else:
pytest.skip("MCP server not available or not configured for real execution")
def test_mcp_execution_error_handling(self, mcp_executor):
"""Test error handling in real MCP execution scenarios."""
# Create a test tool with invalid endpoint
invalid_tool = MCPTool(
tool_id="test_invalid",
name="Invalid Test Tool",
description="Tool for testing error handling",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://localhost:9999/invalid",
timeout_seconds=5
)
test_prompt = MCPPrompt(
prompt_id="test_prompt",
name="Test Prompt",
description="Test prompt",
target_tool_id="test_invalid",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(
tool=invalid_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {"input": "test data"}
# Execute and expect error handling
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify error response structure
assert result["status"].startswith("error_")
assert "error_information" in result
assert "recovery_suggestions" in result["error_information"]
assert result["execution_mode"] == "live_mcp_failed"
# Verify error categorization
error_info = result["error_information"]
assert error_info["error_category"] in ["network", "server_error", "connection"]
assert isinstance(error_info["recovery_suggestions"], list)
assert len(error_info["recovery_suggestions"]) > 0
def test_mcp_execution_timeout_handling(self, mcp_executor):
"""Test timeout handling in MCP execution."""
# Create tool with very short timeout
timeout_tool = MCPTool(
tool_id="test_timeout",
name="Timeout Test Tool",
description="Tool for testing timeout handling",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://httpbin.org/delay/10", # 10 second delay
timeout_seconds=1 # 1 second timeout
)
test_prompt = MCPPrompt(
prompt_id="timeout_prompt",
name="Timeout Test Prompt",
description="Test timeout prompt",
target_tool_id="test_timeout",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(
tool=timeout_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {"input": "test data"}
# Execute and expect timeout error
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify timeout error handling
assert result["status"] == "error_live_mcp_timeout"
assert "timeout" in result["message"].lower()
assert result["error_information"]["error_category"] == "network"
# Verify timeout-specific recovery suggestions
suggestions = result["error_information"]["recovery_suggestions"]
assert any("timeout" in suggestion.lower() for suggestion in suggestions)
def test_mcp_execution_retry_mechanism(self, mcp_executor):
"""Test retry mechanism for MCP execution failures."""
with patch("requests.Session.post") as mock_post:
# Configure mock to fail twice then succeed
mock_response_fail = Mock()
mock_response_fail.raise_for_status.side_effect = requests.exceptions.HTTPError(
response=Mock(status_code=503, text="Service Unavailable")
)
mock_response_fail.status_code = 503
mock_response_fail.text = "Service Unavailable"
mock_response_success = Mock()
mock_response_success.raise_for_status.return_value = None
mock_response_success.json.return_value = {"data": ["Success after retry"]}
mock_response_success.status_code = 200
# First two calls fail, third succeeds
mock_post.side_effect = [
mock_response_fail,
mock_response_fail,
mock_response_success
]
# Create test tool
retry_tool = MCPTool(
tool_id="test_retry",
name="Retry Test Tool",
description="Tool for testing retry mechanism",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://localhost:7860/test",
timeout_seconds=30
)
test_prompt = MCPPrompt(
prompt_id="retry_prompt",
name="Retry Test Prompt",
description="Test retry prompt",
target_tool_id="test_retry",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(
tool=retry_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {"input": "test data"}
# Execute with retry
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify successful execution after retries
assert result["status"] == "success_live_mcp"
assert result["attempts_made"] == 3
assert mock_post.call_count == 3
def test_fallback_to_simulation(self, mcp_executor):
"""Test fallback to simulation when MCP execution fails."""
# Create tool configured for simulation
sim_tool = MCPTool(
tool_id="test_simulation",
name="Simulation Test Tool",
description="Tool for testing simulation fallback",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated" # Configured for simulation
)
test_prompt = MCPPrompt(
prompt_id="sim_prompt",
name="Simulation Test Prompt",
description="Test simulation prompt",
target_tool_id="test_simulation",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(
tool=sim_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {"input": "test data"}
# Execute simulation
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify simulation execution (handle random error simulation)
assert result["status"] in ["simulated_success", "simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
assert result["execution_mode"] in ["simulated", "simulated_error"]
# If successful, check output content
if result["status"] == "simulated_success":
assert "tool_specific_output" in result
assert result["tool_specific_output"] is not None
def test_input_parameter_ordering(self, mcp_executor):
"""Test that input parameters are correctly ordered for MCP calls."""
with patch("requests.Session.post") as mock_post:
mock_response = Mock()
mock_response.raise_for_status.return_value = None
mock_response.json.return_value = {"data": ["Parameter order test result"]}
mock_post.return_value = mock_response
# Create tool with specific parameter order
ordered_tool = MCPTool(
tool_id="test_order",
name="Parameter Order Test Tool",
description="Tool for testing parameter ordering",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://localhost:7860/test",
input_parameter_order=["text", "max_length", "min_length"],
timeout_seconds=30
)
test_prompt = MCPPrompt(
prompt_id="order_prompt",
name="Order Test Prompt",
description="Test parameter order prompt",
target_tool_id="test_order",
template_string="Summarize: {{text}} with max {{max_length}} and min {{min_length}}",
input_variables=["text", "max_length", "min_length"]
)
planned_step = PlannedStep(
tool=ordered_tool,
prompt=test_prompt,
relevance_score=0.9
)
test_inputs = {
"min_length": "50",
"text": "Test document content",
"max_length": "150"
}
# Execute
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify successful execution
assert result["status"] == "success_live_mcp"
# Verify parameter order in the call
call_args = mock_post.call_args
payload = call_args[1]["json"]
expected_order = ["Test document content", 150, 50] # Numeric parameters should be integers
assert payload["data"] == expected_order
def test_performance_requirements(self, initialized_system):
"""Test that end-to-end execution meets performance requirements."""
client = initialized_system["client"]
if initialized_system["planner"] is None:
pytest.skip("Agent system not initialized")
# Test response time for planning
start_time = time.time()
plan_request = {
"query": "I need sentiment analysis for customer reviews",
"top_k": 3
}
response = client.post("/api/plan/generate", json=plan_request)
planning_time = time.time() - start_time
# Handle system not available
if response.status_code == 503:
pytest.skip("Agent system not available - check initialization and API keys")
assert response.status_code == 200
assert planning_time < 2.0 # Planning should complete within 2 seconds
plan_data = response.json()
# Check if response has error status
if "detail" in plan_data:
pytest.skip(f"System error: {plan_data['detail']}")
assert plan_data["status"] == "success"
print(f"✅ Planning completed in {planning_time:.2f}s")
def test_mcp_executor_direct_testing(self, mcp_executor):
"""Test MCP executor directly without requiring external APIs."""
# Create a comprehensive test that works without external dependencies
# Test 1: Simulated execution
sim_tool = MCPTool(
tool_id="test_sentiment_sim",
name="Test Sentiment Analyzer",
description="Test sentiment analysis tool",
tags=["sentiment", "test"],
invocation_command_stub="test_sentiment",
execution_type="simulated"
)
sim_prompt = MCPPrompt(
prompt_id="test_sentiment_prompt",
name="Test Sentiment Prompt",
description="Test sentiment analysis prompt",
target_tool_id="test_sentiment_sim",
template_string="Analyze sentiment: {{text}}",
input_variables=["text"]
)
planned_step = PlannedStep(
tool=sim_tool,
prompt=sim_prompt,
relevance_score=0.95
)
test_inputs = {"text": "This product is amazing and I love it!"}
# Execute simulation
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Verify simulation results (handle random error simulation)
assert result["status"] in ["simulated_success", "simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
assert result["execution_mode"] in ["simulated", "simulated_error"]
assert result["tool_id_used"] == "test_sentiment_sim"
assert result["tool_name_used"] == "Test Sentiment Analyzer"
# If successful, check output content
if result["status"] == "simulated_success":
assert "tool_specific_output" in result
assert result["tool_specific_output"] is not None
assert "sentiment" in result["tool_specific_output"].lower()
print(f"✅ Simulated execution test passed (status: {result['status']})")
# Test 2: Error handling for unreachable MCP endpoint
mcp_tool_unreachable = MCPTool(
tool_id="test_mcp_unreachable",
name="MCP Tool Unreachable",
description="MCP tool with unreachable endpoint",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://localhost:9999/unreachable", # Unreachable endpoint
timeout_seconds=5
)
# Create a matching prompt for the unreachable tool
mcp_prompt = MCPPrompt(
prompt_id="test_mcp_unreachable_prompt",
name="Test MCP Unreachable Prompt",
description="Test prompt for unreachable MCP endpoint",
target_tool_id="test_mcp_unreachable", # Match the tool_id
template_string="Test unreachable endpoint: {{text}}",
input_variables=["text"]
)
mcp_planned_step = PlannedStep(
tool=mcp_tool_unreachable,
prompt=mcp_prompt, # Use the matching prompt instead of sim_prompt
relevance_score=0.8
)
# Execute with unreachable endpoint - should return error
mcp_result = mcp_executor.execute_plan_step(mcp_planned_step, test_inputs)
# Verify it handles unreachable endpoint with proper error
assert mcp_result["status"].startswith("error_")
assert mcp_result["execution_mode"] == "live_mcp_failed"
assert "error_information" in mcp_result
print(f"✅ Unreachable endpoint handling test passed (status: {mcp_result['status']})")
# Test 3: Error handling for invalid inputs
with pytest.raises(ValueError, match="Plan must be a PlannedStep instance"):
mcp_executor.execute_plan_step("invalid_plan", test_inputs)
with pytest.raises(ValueError, match="Inputs must be a dictionary"):
mcp_executor.execute_plan_step(planned_step, "invalid_inputs")
print("✅ Input validation test passed")
# Test 4: Different tool types
summarizer_tool = MCPTool(
tool_id="test_summarizer",
name="Test Text Summarizer",
description="Test text summarization tool",
tags=["summarization", "test"],
invocation_command_stub="test_summarize",
execution_type="simulated"
)
summarizer_prompt = MCPPrompt(
prompt_id="test_summarizer_prompt",
name="Test Summarization Prompt",
description="Test summarization prompt",
target_tool_id="test_summarizer",
template_string="Summarize: {{text}} with max length {{max_length}}",
input_variables=["text", "max_length"]
)
summarizer_step = PlannedStep(
tool=summarizer_tool,
prompt=summarizer_prompt,
relevance_score=0.9
)
summarizer_inputs = {
"text": "This is a long document that needs to be summarized for better understanding.",
"max_length": "50"
}
summarizer_result = mcp_executor.execute_plan_step(summarizer_step, summarizer_inputs)
# Verify summarization results (handle random error simulation)
assert summarizer_result["status"] in ["simulated_success", "simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
# If successful, check output content
if summarizer_result["status"] == "simulated_success":
assert "summary" in summarizer_result["tool_specific_output"].lower()
print(f"✅ Multi-tool type test passed (status: {summarizer_result['status']})")
def _is_mcp_server_available(self, endpoint_url: str) -> bool:
"""Check if MCP server is available at the given endpoint."""
try:
response = requests.get(endpoint_url.replace("/gradio_api/mcp/sse", "/"), timeout=5)
return response.status_code == 200
except:
return False
def _create_planned_step_from_api_response(self, step_data: dict[str, Any]) -> PlannedStep:
"""Create PlannedStep object from API response data."""
tool_info = step_data["tool"]
prompt_info = step_data["prompt"]
tool = MCPTool(
tool_id=tool_info["tool_id"],
name=tool_info["name"],
description=tool_info["description"],
tags=tool_info.get("tags", []),
invocation_command_stub=tool_info.get("invocation_command_stub", ""),
execution_type=tool_info.get("execution_type", "simulated"),
mcp_endpoint_url=tool_info.get("mcp_endpoint_url"),
input_parameter_order=tool_info.get("input_parameter_order", []),
timeout_seconds=tool_info.get("timeout_seconds", 30)
)
prompt = MCPPrompt(
prompt_id=prompt_info["prompt_id"],
name=prompt_info["name"],
description=prompt_info["description"],
target_tool_id=prompt_info.get("target_tool_id", tool_info["tool_id"]),
template_string=prompt_info["template_string"],
input_variables=prompt_info["input_variables"],
difficulty_level=prompt_info.get("difficulty_level", "beginner")
)
return PlannedStep(
tool=tool,
prompt=prompt,
relevance_score=step_data["relevance_score"]
)
class TestE2EMcpIntegrationScenarios:
"""Test integration scenarios across the complete system."""
@pytest.fixture
def client(self):
"""Provide test client with Gradio UI mounted."""
return TestClient(app_with_ui)
def test_health_check_before_execution(self, client):
"""Test that system health check works before attempting execution."""
response = client.get("/health")
assert response.status_code == 200
health_data = response.json()
assert health_data["status"] == "healthy"
assert "timestamp" in health_data
def test_api_documentation_accessibility(self, client):
"""Test that API documentation is accessible."""
response = client.get("/docs")
assert response.status_code == 200
def test_gradio_ui_integration(self, client):
"""Test that Gradio UI is accessible."""
response = client.get("/ui/")
assert response.status_code == 200
def test_error_propagation_through_system(self, client):
"""Test that errors propagate correctly through the system."""
# Test with malformed request
response = client.post("/api/plan/generate", json={})
assert response.status_code == 422 # Validation error
# Test with invalid data types
response = client.post(
"/api/plan/generate",
json={"query": 123, "top_k": "invalid"}
)
assert response.status_code == 422
def test_system_resilience_under_load(self, client):
"""Test system resilience under concurrent load."""
import concurrent.futures
def make_request():
return client.post(
"/api/plan/generate",
json={"query": "test sentiment analysis", "top_k": 1}
)
# Submit multiple concurrent requests
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(make_request) for _ in range(20)]
responses = [future.result() for future in concurrent.futures.as_completed(futures)]
# Verify all requests completed
assert len(responses) == 20
for response in responses:
assert response.status_code in [200, 503] # Success or service unavailable
def test_data_consistency_across_components(self, client):
"""Test that data remains consistent across system components."""
# Get a plan
response = client.post(
"/api/plan/generate",
json={"query": "sentiment analysis", "top_k": 1}
)
assert response.status_code == 200
plan_data = response.json()
if len(plan_data["planned_steps"]) > 0:
step = plan_data["planned_steps"][0]
# Verify data consistency
assert "tool" in step
assert "prompt" in step
assert "relevance_score" in step
# Verify tool-prompt relationship
tool_id = step["tool"]["tool_id"]
target_tool_id = step["prompt"].get("target_tool_id")
if target_tool_id:
assert tool_id == target_tool_id
class TestE2EMcpEdgeCases:
"""Test edge cases in end-to-end MCP execution."""
@pytest.fixture
def mcp_executor(self):
"""Provide McpExecutorAgent for testing."""
return McpExecutorAgent()
def test_empty_input_handling(self, mcp_executor):
"""Test handling of empty inputs."""
tool = MCPTool(
tool_id="empty_test",
name="Empty Input Test Tool",
description="Tool for testing empty inputs",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
prompt = MCPPrompt(
prompt_id="empty_prompt",
name="Empty Test Prompt",
description="Test empty prompt",
target_tool_id="empty_test",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(tool=tool, prompt=prompt, relevance_score=0.9)
# Test with empty inputs
empty_inputs = {}
result = mcp_executor.execute_plan_step(planned_step, empty_inputs)
# Should handle gracefully (handle random error simulation)
assert result["status"] in ["simulated_success", "simulated_error_missing_input",
"simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
def test_large_input_handling(self, mcp_executor):
"""Test handling of very large inputs."""
tool = MCPTool(
tool_id="large_test",
name="Large Input Test Tool",
description="Tool for testing large inputs",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
prompt = MCPPrompt(
prompt_id="large_prompt",
name="Large Test Prompt",
description="Test large prompt",
target_tool_id="large_test",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(tool=tool, prompt=prompt, relevance_score=0.9)
# Test with very large input
large_input = "x" * 100000 # 100KB of text
large_inputs = {"input": large_input}
result = mcp_executor.execute_plan_step(planned_step, large_inputs)
# Should handle gracefully (handle random error simulation)
assert result["status"] in ["simulated_success", "simulated_error_input_too_large",
"simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
def test_special_characters_in_input(self, mcp_executor):
"""Test handling of special characters and Unicode in inputs."""
tool = MCPTool(
tool_id="unicode_test",
name="Unicode Test Tool",
description="Tool for testing Unicode inputs",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
prompt = MCPPrompt(
prompt_id="unicode_prompt",
name="Unicode Test Prompt",
description="Test Unicode prompt",
target_tool_id="unicode_test",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(tool=tool, prompt=prompt, relevance_score=0.9)
# Test with special characters and Unicode
special_inputs = {
"input": "Test with émojis 🎯, special chars @#$%, and Unicode: 你好世界"
}
result = mcp_executor.execute_plan_step(planned_step, special_inputs)
# Should handle gracefully (handle random error simulation - 10% chance)
assert result["status"] in ["simulated_success", "simulated_error_timeout", "simulated_error_rate_limit",
"simulated_error_invalid_input", "simulated_error_service_unavailable",
"simulated_error_authentication_failed"]
assert special_inputs["input"] in str(result["inputs_received"])
def test_malformed_tool_configuration(self, mcp_executor):
"""Test handling of malformed tool configurations."""
# Test 1: Empty name should be rejected at construction
with pytest.raises(ValueError, match="name cannot be empty"):
MCPTool(
tool_id="malformed_test",
name="", # Empty name
description="Tool with malformed config",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
# Test 2: Empty tool_id should be rejected at construction
with pytest.raises(ValueError, match="tool_id cannot be empty"):
MCPTool(
tool_id="", # Empty tool_id
name="Valid Name",
description="Tool with malformed config",
tags=["test"],
invocation_command_stub="test",
execution_type="simulated"
)
# Test 3: Invalid execution type should be rejected at construction
with pytest.raises(ValueError, match="execution_type must be"):
MCPTool(
tool_id="malformed_test",
name="Valid Name",
description="Tool with malformed config",
tags=["test"],
invocation_command_stub="test",
execution_type="invalid_type" # Invalid execution type
)
# Test 4: Missing endpoint URL for remote MCP should be rejected
with pytest.raises(ValueError, match="mcp_endpoint_url is required"):
MCPTool(
tool_id="malformed_test",
name="Valid Name",
description="Tool with malformed config",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio", # Requires endpoint URL
mcp_endpoint_url=None # Missing required URL
)
# Test 5: Test a configuration that passes validation but might cause execution issues
# Create a tool with a problematic endpoint that will fail during execution
problematic_tool = MCPTool(
tool_id="problematic_test",
name="Problematic Test Tool",
description="Tool that will fail during execution",
tags=["test"],
invocation_command_stub="test",
execution_type="remote_mcp_gradio",
mcp_endpoint_url="http://nonexistent.invalid/endpoint", # Invalid URL
timeout_seconds=1 # Very short timeout
)
prompt = MCPPrompt(
prompt_id="problematic_prompt",
name="Problematic Test Prompt",
description="Test prompt for problematic tool",
target_tool_id="problematic_test",
template_string="Test: {{input}}",
input_variables=["input"]
)
planned_step = PlannedStep(tool=problematic_tool, prompt=prompt, relevance_score=0.9)
test_inputs = {"input": "test"}
# This should execute but fail gracefully due to invalid endpoint
result = mcp_executor.execute_plan_step(planned_step, test_inputs)
# Should handle execution errors gracefully
assert result["status"].startswith("error_")
assert "error_information" in result
assert result["execution_mode"] == "live_mcp_failed"
|