kgraph-mcp-agent-platform / tests /test_app_handlers.py
BasalGanglia's picture
πŸ› οΈ Fix HuggingFace Space configuration - Remove quotes from frontmatter
64ced8b verified
"""Tests for app handler functions.
This module tests the main handler functions used in the Gradio UI,
particularly focusing on input collection and execution handling.
"""
import json
from unittest.mock import patch
import pytest
# Import the function we're testing
from app import handle_execute_plan
from kg_services.ontology import MCPPrompt, MCPTool, PlannedStep
class TestHandleExecutePlan:
"""Test suite for handle_execute_plan function."""
@pytest.fixture
def sample_tool(self) -> MCPTool:
"""Create a sample MCPTool for testing."""
return MCPTool(
tool_id="test-tool-001",
name="Test Sentiment Analyzer",
description="A test tool for sentiment analysis",
tags=["sentiment", "analysis", "test"],
invocation_command_stub="sentiment_analyze --input {text}",
)
@pytest.fixture
def sample_prompt(self) -> MCPPrompt:
"""Create a sample MCPPrompt for testing."""
return MCPPrompt(
prompt_id="test-prompt-001",
name="Basic Sentiment Analysis",
description="Analyze sentiment of provided text",
target_tool_id="test-tool-001",
template_string="Analyze the sentiment of this text: {{text_input}}",
input_variables=["text_input"],
difficulty_level="beginner",
example_inputs={"text_input": "This is a great product!"},
)
@pytest.fixture
def sample_planned_step(
self, sample_tool: MCPTool, sample_prompt: MCPPrompt
) -> PlannedStep:
"""Create a sample PlannedStep for testing."""
return PlannedStep(tool=sample_tool, prompt=sample_prompt, relevance_score=0.95)
@pytest.fixture
def multi_input_prompt(self) -> MCPPrompt:
"""Create a prompt with multiple input variables."""
return MCPPrompt(
prompt_id="test-prompt-multi",
name="Multi-Input Analysis",
description="Analysis with multiple inputs",
target_tool_id="test-tool-001",
template_string="Analyze {{input1}} with context {{input2}} and format {{input3}}",
input_variables=["input1", "input2", "input3"],
difficulty_level="intermediate",
)
@pytest.fixture
def no_input_prompt(self) -> MCPPrompt:
"""Create a prompt with no input variables."""
return MCPPrompt(
prompt_id="test-prompt-no-input",
name="No Input Required",
description="A prompt that requires no inputs",
target_tool_id="test-tool-001",
template_string="Perform standard analysis",
input_variables=[],
difficulty_level="beginner",
)
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_basic_success(
self, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test successful input collection with single variable."""
# Arrange
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_success",
"execution_id": "exec_test_123",
"tool_information": {"tool_name": "Test Sentiment Analyzer"},
"prompt_information": {"prompt_name": "Basic Sentiment Analysis"},
"execution_details": {"inputs_count": 1, "execution_time_ms": 1250},
"results": {
"mock_output": "Mock analysis results",
"confidence_score": 0.95,
},
"metadata": {"simulation_version": "MVP3_Sprint4"},
}
test_query = "analyze sentiment"
test_input = "This is a great product!"
# Act
result = handle_execute_plan(test_query, test_input)
# Assert
assert "πŸŽ‰ **Execution Complete!**" in result
assert "Test Sentiment Analyzer" in result
assert "Basic Sentiment Analysis" in result
assert test_input in result
assert "βœ…" in result
# Verify planner was called correctly
mock_planner_agent.generate_plan.assert_called_once_with(test_query, top_k=1)
# Verify executor was called
mock_executor_agent.execute_plan_step.assert_called_once()
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_multiple_inputs(
self, mock_planner_agent, mock_executor_agent, sample_tool, multi_input_prompt
):
"""Test input collection with multiple variables."""
# Arrange
planned_step = PlannedStep(
tool=sample_tool, prompt=multi_input_prompt, relevance_score=0.88
)
mock_planner_agent.generate_plan.return_value = [planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_success",
"execution_id": "exec_test_456",
"tool_information": {"tool_name": "Test Tool"},
"prompt_information": {"prompt_name": "Multi Input Prompt"},
"execution_details": {"inputs_count": 3, "execution_time_ms": 1250},
"results": {
"mock_output": "Mock analysis results",
"confidence_score": 0.95,
},
"metadata": {"simulation_version": "MVP3_Sprint4"},
}
test_query = "complex analysis"
input1, input2, input3 = "data1", "context2", "format3"
# Act
result = handle_execute_plan(
test_query, input1, input2, input3, "unused4", "unused5"
)
# Assert
assert "πŸŽ‰ **Execution Complete!**" in result
assert input1 in result
assert input2 in result
assert input3 in result
# Parse the JSON section to verify correct mapping
json_start = result.find("```json\n")
if json_start != -1:
json_start += 8
json_end = result.find("\n```", json_start)
if json_end != -1:
json_content = result[json_start:json_end].strip()
if json_content:
parsed_inputs = json.loads(json_content)
assert parsed_inputs == {"input1": input1, "input2": input2, "input3": input3}
else:
# If JSON content is empty, just verify the inputs are present in the result
assert all(inp in result for inp in [input1, input2, input3])
else:
# If JSON section not properly closed, just verify inputs are present
assert all(inp in result for inp in [input1, input2, input3])
else:
# If no JSON section found, just verify inputs are present in the result
assert all(inp in result for inp in [input1, input2, input3])
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_no_inputs_required(
self, mock_planner_agent, mock_executor_agent, sample_tool, no_input_prompt
):
"""Test handling of prompts that require no inputs."""
# Arrange
planned_step = PlannedStep(
tool=sample_tool, prompt=no_input_prompt, relevance_score=0.90
)
mock_planner_agent.generate_plan.return_value = [planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_success",
"execution_id": "exec_test_789",
"tool_information": {"tool_name": "Test Tool"},
"prompt_information": {"prompt_name": "No Input Prompt"},
"execution_details": {"inputs_count": 0, "execution_time_ms": 1250},
"results": {
"mock_output": "Mock analysis results",
"confidence_score": 0.95,
},
"metadata": {"simulation_version": "MVP3_Sprint4"},
}
test_query = "standard analysis"
# Act
result = handle_execute_plan(test_query, "unused1", "unused2")
# Assert
assert "πŸŽ‰ **Execution Complete!**" in result
assert "No Input Required" in result
# Verify empty inputs dict
json_start = result.find("```json\n")
if json_start != -1:
json_start += 8
json_end = result.find("\n```", json_start)
if json_end != -1:
json_content = result[json_start:json_end].strip()
if json_content:
parsed_inputs = json.loads(json_content)
assert parsed_inputs == {}
# If JSON content is empty, that's acceptable for no inputs required
def test_handle_execute_plan_no_planner_agent(self):
"""Test error handling when planner agent is not available."""
# Act
with patch("app.planner_agent", None):
result = handle_execute_plan("test query", "input1")
# Assert
assert "❌ **Error**: Planner service not available" in result
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_empty_query(self, mock_planner_agent, mock_executor_agent):
"""Test error handling with empty query."""
# Act
result = handle_execute_plan("", "input1")
# Assert
assert "❌ **Error**: Original query is missing" in result
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_no_planned_steps(self, mock_planner_agent, mock_executor_agent):
"""Test error handling when no planned steps are returned."""
# Arrange
mock_planner_agent.generate_plan.return_value = []
# Act
result = handle_execute_plan("test query", "input1")
# Assert
assert "❌ **Error**: Could not retrieve the current action plan" in result
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_planner_exception(self, mock_planner_agent, mock_executor_agent):
"""Test error handling when planner raises an exception."""
# Arrange
mock_planner_agent.generate_plan.side_effect = Exception("Planner error")
# Act
result = handle_execute_plan("test query", "input1")
# Assert
assert "❌ **Execution Error**" in result
assert "Planner error" in result
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_partial_inputs(
self, mock_planner_agent, mock_executor_agent, sample_tool, multi_input_prompt
):
"""Test handling when fewer inputs are provided than required."""
# Arrange
planned_step = PlannedStep(
tool=sample_tool, prompt=multi_input_prompt, relevance_score=0.75
)
mock_planner_agent.generate_plan.return_value = [planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_success",
"execution_id": "exec_test_partial",
"tool_information": {"tool_name": "Test Tool"},
"prompt_information": {"prompt_name": "Multi Input Prompt"},
"execution_details": {"inputs_count": 2, "execution_time_ms": 1250},
"results": {
"mock_output": "Mock analysis results",
"confidence_score": 0.95,
},
"metadata": {"simulation_version": "MVP3_Sprint4"},
}
test_query = "partial input test"
# Only provide 2 inputs for a 3-input prompt
input1, input2 = "data1", "context2"
# Act
result = handle_execute_plan(test_query, input1, input2)
# Assert
assert "πŸŽ‰ **Execution Complete!**" in result
# Parse JSON to verify partial input handling
json_start = result.find("```json\n")
if json_start != -1:
json_start += 8
json_end = result.find("\n```", json_start)
if json_end != -1:
json_content = result[json_start:json_end].strip()
if json_content:
parsed_inputs = json.loads(json_content)
# Should have empty string for missing input
expected = {"input1": input1, "input2": input2, "input3": ""}
assert parsed_inputs == expected
else:
# If JSON content is empty, just verify provided inputs are in the result
assert input1 in result and input2 in result
else:
# If JSON section not properly closed, just verify provided inputs are present
assert input1 in result and input2 in result
else:
# If no JSON section found, just verify provided inputs are present in the result
assert input1 in result and input2 in result
@patch("app.executor_agent")
@patch("app.planner_agent")
@patch("app.logger")
def test_handle_execute_plan_logging(
self, mock_logger, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test that appropriate logging occurs during execution."""
# Arrange
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_success",
"execution_id": "exec_test_log",
"tool_information": {"tool_name": "Test Sentiment Analyzer"},
"prompt_information": {"prompt_name": "Basic Sentiment Analysis"},
"execution_details": {"inputs_count": 1, "execution_time_ms": 1250},
"results": {
"mock_output": "Mock analysis results",
"confidence_score": 0.95,
},
"metadata": {"simulation_version": "MVP3_Sprint4"},
}
test_query = "logging test"
test_input = "test input"
# Act
handle_execute_plan(test_query, test_input)
# Assert
# Check that info logs were called
assert mock_logger.info.call_count >= 2
# Verify specific log messages
log_calls = [call[0][0] for call in mock_logger.info.call_args_list]
assert any("Executing plan with StubExecutorAgent" in log for log in log_calls)
assert any(
"Execution simulation completed successfully" in log for log in log_calls
)
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_json_formatting(
self, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test that JSON formatting in output is valid."""
# Arrange
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_success",
"execution_id": "exec_test_json",
"tool_information": {"tool_name": "Test Sentiment Analyzer"},
"prompt_information": {"prompt_name": "Basic Sentiment Analysis"},
"execution_details": {"inputs_count": 1, "execution_time_ms": 1250},
"results": {
"mock_output": "Mock analysis results",
"confidence_score": 0.95,
},
"metadata": {"simulation_version": "MVP3_Sprint4"},
}
test_query = "json formatting test"
test_input = "test input with special chars: @#$%^&*()"
# Act
result = handle_execute_plan(test_query, test_input)
# Assert
# Verify the input is properly displayed in the output
assert "πŸŽ‰ **Execution Complete!**" in result
assert test_input in result
assert "Mock analysis results" in result
# Verify special characters are handled properly
assert "@#$%^&*()" in result
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_markdown_formatting(
self, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test that execution results are properly formatted in Markdown."""
# Arrange
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_success",
"execution_id": "exec_test_md",
"tool_information": {"tool_name": "Test Sentiment Analyzer"},
"prompt_information": {"prompt_name": "Basic Sentiment Analysis"},
"execution_details": {"inputs_count": 1, "execution_time_ms": 1250},
"results": {
"mock_output": "Mock analysis results",
"confidence_score": 0.95,
},
"metadata": {"simulation_version": "MVP3_Sprint4"},
}
test_query = "markdown test"
test_input = "test input"
# Act
result = handle_execute_plan(test_query, test_input)
# Assert
# Check for Markdown headers
assert "# πŸŽ‰ **Execution Complete!**" in result
assert "## πŸ“Š **Execution Summary**" in result
assert "## πŸ”§ **Tool & Prompt Information**" in result
assert "## πŸ“ **Input Summary**" in result
assert "## 🎯 **Execution Results**" in result
# Check for proper formatting elements
assert "- **Status**: βœ…" in result
assert "- **Tool**:" in result
assert "Mock analysis results" in result
class TestErrorHandling:
"""Test suite for error handling in app handlers."""
@pytest.fixture
def sample_tool(self) -> MCPTool:
"""Create a sample MCPTool for testing."""
return MCPTool(
tool_id="test-tool-error",
name="Test Error Tool",
description="A tool for testing error scenarios",
tags=["test", "error"],
invocation_command_stub="test_error {input}",
)
@pytest.fixture
def sample_prompt(self) -> MCPPrompt:
"""Create a sample MCPPrompt for testing."""
return MCPPrompt(
prompt_id="test-prompt-error",
name="Test Error Prompt",
description="A prompt for testing error scenarios",
target_tool_id="test-tool-error",
template_string="Process: {{text_input}}",
input_variables=["text_input"],
difficulty_level="beginner",
)
@pytest.fixture
def sample_planned_step(
self, sample_tool: MCPTool, sample_prompt: MCPPrompt
) -> PlannedStep:
"""Create a sample PlannedStep for testing."""
return PlannedStep(tool=sample_tool, prompt=sample_prompt, relevance_score=0.95)
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_error_response(
self, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test handling of error responses from executor."""
# Arrange
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_error",
"execution_id": "exec_err_test_123",
"tool_information": {"tool_name": "Test Error Tool"},
"prompt_information": {"prompt_name": "Test Error Prompt"},
"execution_details": {
"inputs_count": 1,
"execution_time_ms": 500,
"error_occurred_at": 45,
},
"error_information": {
"error_type": "user_requested",
"error_code": "USR_REQ_001",
"error_severity": "medium",
"error_message": "User explicitly requested error simulation",
"error_details": "Error simulation was triggered by user input containing error keywords",
"suggested_fixes": [
"Remove error keywords from input",
"Use different test data",
],
"retry_recommended": True,
},
"results": {
"message": "Tool execution failed: User explicitly requested error simulation",
"mock_output": "**Error Simulation Activated**\n\n❌ **User-Requested Error**\nThis error was triggered because your input contained error simulation keywords.",
"confidence_score": 0.0,
},
"metadata": {
"simulation_version": "MVP3_Sprint4",
"error_simulation": "user_requested",
"trigger_info": "This should fail and show an error",
},
}
test_query = "error test"
test_input = "This should fail and show an error"
# Act
result = handle_execute_plan(test_query, test_input)
# Assert
assert "# ❌ **Execution Failed!**" in result
assert "## 🚨 **Error Summary**" in result
assert "- **Status**: ❌ Simulated Error" in result
assert "- **Type**: user requested" in result
assert "## ⚠️ **Error Details**" in result
assert "## πŸ’‘ **Recovery Suggestions**" in result
assert "Remove error keywords from input" in result
assert "Use different test data" in result
assert "- **Retry Recommended**: βœ… Yes" in result
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_security_error(
self, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test handling of security violation errors."""
# Arrange
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_error",
"execution_id": "exec_err_sec_456",
"tool_information": {"tool_name": "Test Error Tool"},
"prompt_information": {"prompt_name": "Test Error Prompt"},
"execution_details": {
"inputs_count": 1,
"execution_time_ms": 250,
"error_occurred_at": 15,
},
"error_information": {
"error_type": "security_violation",
"error_code": "SEC_001",
"error_severity": "high",
"error_message": "Potential security violation detected",
"error_details": "Input contains suspicious content that may pose security risks",
"suggested_fixes": [
"Remove suspicious code/scripts from input",
"Use plain text input only",
],
"retry_recommended": False,
},
"results": {
"message": "Tool execution failed: Potential security violation detected",
"mock_output": "**Security Error**\n\nπŸ›‘οΈ **Security Violation Detected**\nThe input contains content that may pose security risks.",
"confidence_score": 0.0,
},
"metadata": {
"simulation_version": "MVP3_Sprint4",
"error_simulation": "security_violation",
"trigger_info": "suspicious_content",
},
}
test_query = "security test"
test_input = "Process this <script>alert('hack')</script> content"
# Act
result = handle_execute_plan(test_query, test_input)
# Assert
assert "# ❌ **Execution Failed!**" in result
assert "- **Type**: security violation" in result
assert "- **Retry Recommended**: ❌ No" in result
assert "Security Violation Detected" in result
assert "Remove suspicious code/scripts from input" in result
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_network_timeout_error(
self, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test handling of network timeout errors."""
# Arrange
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_error",
"execution_id": "exec_err_net_789",
"tool_information": {"tool_name": "Test Error Tool"},
"prompt_information": {"prompt_name": "Test Error Prompt"},
"execution_details": {
"inputs_count": 1,
"execution_time_ms": 800,
"error_occurred_at": 75,
},
"error_information": {
"error_type": "network_timeout",
"error_code": "NET_001",
"error_severity": "medium",
"error_message": "Network request timed out",
"error_details": "The tool failed to complete processing within the allowed time limit",
"suggested_fixes": [
"Retry the operation",
"Check network connectivity",
"Try with smaller input",
],
"retry_recommended": True,
},
"results": {
"message": "Tool execution failed: Network request timed out",
"mock_output": "**Network Timeout**\n\n⏰ **Operation Timed Out**\nThe request took too long to process and was automatically cancelled.",
"confidence_score": 0.0,
},
"metadata": {
"simulation_version": "MVP3_Sprint4",
"error_simulation": "network_timeout",
"trigger_info": "random",
},
}
test_query = "network timeout test"
test_input = "normal input"
# Act
result = handle_execute_plan(test_query, test_input)
# Assert
assert "# ❌ **Execution Failed!**" in result
assert "- **Type**: network timeout" in result
assert "Operation Timed Out" in result
assert "Retry the operation" in result
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_error_markdown_structure(
self, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test that error responses maintain proper Markdown structure."""
# Arrange
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_error",
"execution_id": "exec_err_md_test",
"tool_information": {"tool_name": "Test Error Tool"},
"prompt_information": {"prompt_name": "Test Error Prompt"},
"execution_details": {
"inputs_count": 1,
"execution_time_ms": 300,
"error_occurred_at": 30,
},
"error_information": {
"error_type": "input_too_large",
"error_code": "VAL_001",
"error_severity": "medium",
"error_message": "Input exceeds maximum allowed size",
"error_details": "Input size limit exceeded",
"suggested_fixes": [
"Reduce input size",
"Split large inputs into smaller chunks",
],
"retry_recommended": True,
},
"results": {
"message": "Tool execution failed: Input exceeds maximum allowed size",
"mock_output": "**Input Size Error**\n\nπŸ“ **Input Too Large**\nThe provided input exceeds the maximum allowed size for this tool.",
"confidence_score": 0.0,
},
"metadata": {
"simulation_version": "MVP3_Sprint4",
"error_simulation": "input_too_large",
"trigger_info": "large_input",
},
}
test_query = "markdown structure test"
test_input = "test input"
# Act
result = handle_execute_plan(test_query, test_input)
# Assert - Check for proper Markdown headers in error response
assert result.startswith("# ❌ **Execution Failed!**")
assert "## 🚨 **Error Summary**" in result
assert "## πŸ”§ **Tool & Prompt Information**" in result
assert "## ⚠️ **Error Details**" in result
assert "## πŸ’‘ **Recovery Suggestions**" in result
assert "## πŸ“ **Input Summary**" in result
assert "## πŸ“„ **Error Output**" in result
# Check for proper list formatting
assert "1. Reduce input size" in result
assert "2. Split large inputs into smaller chunks" in result
# Check for proper formatting
assert "---" in result # Separator line
@patch("app.executor_agent")
@patch("app.planner_agent")
def test_handle_execute_plan_error_vs_success_distinction(
self, mock_planner_agent, mock_executor_agent, sample_planned_step
):
"""Test that error and success responses are clearly distinguished."""
# Test error response first
mock_planner_agent.generate_plan.return_value = [sample_planned_step]
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_error",
"execution_id": "exec_err_test",
"tool_information": {"tool_name": "Test Tool"},
"prompt_information": {"prompt_name": "Test Prompt"},
"execution_details": {"inputs_count": 1, "execution_time_ms": 300},
"error_information": {
"error_type": "test_scenario",
"error_code": "TST_ERR_001",
"error_severity": "high",
"error_message": "Test error scenario activated",
"error_details": "Test error details",
"suggested_fixes": ["This is for testing"],
"retry_recommended": True,
},
"results": {"mock_output": "Error output", "confidence_score": 0.0},
"metadata": {
"simulation_version": "MVP3_Sprint4",
"error_simulation": "test_scenario",
},
}
# Act
error_result = handle_execute_plan("error test", "test error")
# Assert error response characteristics
assert "❌ **Execution Failed!**" in error_result
assert "🚨 **Error Summary**" in error_result
assert "⚠️ **Error Details**" in error_result
assert "πŸ“„ **Error Output**" in error_result
assert "πŸŽ‰ **Execution Complete!**" not in error_result
assert (
"- **Status**: βœ…" not in error_result
) # Status should not show success checkmark
# Now test success response
mock_executor_agent.execute_plan_step.return_value = {
"status": "simulated_success",
"execution_id": "exec_success_test",
"tool_information": {"tool_name": "Test Tool"},
"prompt_information": {"prompt_name": "Test Prompt"},
"execution_details": {"inputs_count": 1, "execution_time_ms": 1500},
"results": {"mock_output": "Success output", "confidence_score": 0.95},
"metadata": {
"simulation_version": "MVP3_Sprint4",
"error_simulation": "none",
},
}
# Act
success_result = handle_execute_plan("success test", "normal input")
# Assert success response characteristics
assert "πŸŽ‰ **Execution Complete!**" in success_result
assert "πŸ“Š **Execution Summary**" in success_result
assert "🎯 **Execution Results**" in success_result
assert "❌ **Execution Failed!**" not in success_result
assert "🚨 **Error Summary**" not in success_result