kgraph-mcp-agent-platform / tests /test_tool_discovery.py
BasalGanglia's picture
πŸ† Multi-Track Hackathon Submission
1f2d50a verified
"""Test Tool Discovery Engine for MVP 1 (TDD approach)."""
from unittest.mock import patch
import numpy as np
import pytest
# These imports will fail initially - that's the TDD approach
try:
from kg_services.tool_discovery import (
EmbeddingService,
KnowledgeGraphService,
MCPTool,
ToolDiscoveryEngine,
ToolMatch,
ToolSearchCriteria,
)
except ImportError:
# Expected to fail initially in TDD
ToolDiscoveryEngine = None
MCPTool = None
ToolSearchCriteria = None
ToolMatch = None
EmbeddingService = None
KnowledgeGraphService = None
@pytest.mark.unit
class TestMCPTool:
"""Test MCP Tool data model."""
def test_mcp_tool_exists(self) -> None:
"""Test that MCPTool can be imported."""
assert MCPTool is not None, "MCPTool should be importable"
def test_mcp_tool_creation(self) -> None:
"""Test MCPTool creation with required fields."""
if MCPTool is None:
pytest.skip("MCPTool not implemented yet")
tool = MCPTool(
id="summarizer",
name="Text Summarizer",
description="Summarizes long text into concise key points",
category="text_processing",
capabilities=["summarization", "text_analysis"],
input_types=["text"],
output_types=["text"],
)
assert tool.id == "summarizer"
assert tool.name == "Text Summarizer"
assert tool.description == "Summarizes long text into concise key points"
assert tool.category == "text_processing"
assert "summarization" in tool.capabilities
assert "text" in tool.input_types
assert "text" in tool.output_types
def test_mcp_tool_validation(self) -> None:
"""Test MCPTool field validation."""
if MCPTool is None:
pytest.skip("MCPTool not implemented yet")
# Should require name and description
with pytest.raises(Exception): # Pydantic ValidationError
MCPTool(id="test")
@pytest.mark.unit
class TestToolDiscoveryEngine:
"""Test Tool Discovery Engine core functionality."""
def test_tool_discovery_engine_exists(self) -> None:
"""Test that ToolDiscoveryEngine can be imported."""
assert (
ToolDiscoveryEngine is not None
), "ToolDiscoveryEngine should be importable"
def test_discovery_engine_initialization(self) -> None:
"""Test ToolDiscoveryEngine initialization."""
if ToolDiscoveryEngine is None:
pytest.skip("ToolDiscoveryEngine not implemented yet")
engine = ToolDiscoveryEngine()
assert engine is not None
assert hasattr(engine, "search_tools")
assert hasattr(engine, "load_curated_tools")
assert hasattr(engine, "get_tool_by_id")
def test_curated_tools_loading(self) -> None:
"""Test loading of curated mini-KG with 3-5 tools."""
if ToolDiscoveryEngine is None:
pytest.skip("ToolDiscoveryEngine not implemented yet")
engine = ToolDiscoveryEngine()
tools = engine.load_curated_tools()
assert isinstance(tools, list)
assert 3 <= len(tools) <= 5 # As specified in MVP 1
# Each tool should be an MCPTool instance
for tool in tools:
assert hasattr(tool, "id")
assert hasattr(tool, "name")
assert hasattr(tool, "description")
def test_basic_tool_search(self) -> None:
"""Test basic tool search functionality."""
if ToolDiscoveryEngine is None or ToolSearchCriteria is None:
pytest.skip("ToolDiscoveryEngine not implemented yet")
engine = ToolDiscoveryEngine()
# Mock curated tools
mock_tools = [
{
"id": "summarizer",
"name": "Text Summarizer",
"description": "Summarizes long text into key points",
},
{
"id": "sentiment",
"name": "Sentiment Analyzer",
"description": "Analyzes sentiment of text content",
},
{
"id": "image_gen",
"name": "Image Generator",
"description": "Generates images from text descriptions",
},
]
criteria = ToolSearchCriteria(
query="I want to summarize a news article", max_results=3
)
with patch.object(engine, "load_curated_tools", return_value=mock_tools):
results = engine.search_tools(criteria)
assert isinstance(results, list)
assert len(results) <= 3
# Should find summarizer as most relevant
if results:
top_result = results[0]
assert hasattr(top_result, "tool_id") or "id" in top_result
def test_semantic_search_relevance(self) -> None:
"""Test that semantic search returns relevant tools."""
if ToolDiscoveryEngine is None or ToolSearchCriteria is None:
pytest.skip("ToolDiscoveryEngine not implemented yet")
engine = ToolDiscoveryEngine()
# Test query for text summarization
criteria = ToolSearchCriteria(
query="compress this long document into bullet points", max_results=2
)
mock_tools = [
{"id": "summarizer", "description": "Summarizes text into key points"},
{"id": "translator", "description": "Translates text between languages"},
{"id": "image_gen", "description": "Creates images from descriptions"},
]
with patch.object(engine, "load_curated_tools", return_value=mock_tools):
results = engine.search_tools(criteria)
# Summarizer should be most relevant for summarization query
if results:
top_result = results[0]
tool_id = getattr(top_result, "tool_id", None) or top_result.get("id")
assert tool_id == "summarizer"
def test_different_query_types(self) -> None:
"""Test discovery engine with different types of queries."""
if ToolDiscoveryEngine is None or ToolSearchCriteria is None:
pytest.skip("ToolDiscoveryEngine not implemented yet")
engine = ToolDiscoveryEngine()
queries = [
"analyze the mood of this text", # Should find sentiment analyzer
"create a picture from description", # Should find image generator
"translate this to Spanish", # Should find translator
]
for query in queries:
criteria = ToolSearchCriteria(query=query, max_results=1)
with patch.object(engine, "load_curated_tools", return_value=[]):
results = engine.search_tools(criteria)
assert isinstance(results, list)
@pytest.mark.unit
class TestEmbeddingService:
"""Test Embedding Service for semantic search."""
def test_embedding_service_exists(self) -> None:
"""Test that EmbeddingService can be imported."""
assert EmbeddingService is not None, "EmbeddingService should be importable"
def test_embedding_generation(self) -> None:
"""Test embedding generation for text."""
if EmbeddingService is None:
pytest.skip("EmbeddingService not implemented yet")
service = EmbeddingService()
text = "Summarize this document into key points"
# Mock the embedding call to avoid actual API usage in tests
with patch.object(
service, "_get_openai_embedding", return_value=np.random.rand(384).tolist()
):
embedding = service.get_embedding(text)
assert isinstance(embedding, list | np.ndarray)
assert len(embedding) > 0
def test_similarity_calculation(self) -> None:
"""Test cosine similarity calculation between embeddings."""
if EmbeddingService is None:
pytest.skip("EmbeddingService not implemented yet")
service = EmbeddingService()
# Mock embeddings
embedding1 = np.random.rand(384).tolist()
embedding2 = np.random.rand(384).tolist()
similarity = service.calculate_similarity(embedding1, embedding2)
assert isinstance(similarity, float)
assert -1 <= similarity <= 1 # Cosine similarity range
@pytest.mark.unit
class TestKnowledgeGraphService:
"""Test Knowledge Graph Service for tool metadata."""
def test_kg_service_exists(self) -> None:
"""Test that KnowledgeGraphService can be imported."""
assert (
KnowledgeGraphService is not None
), "KnowledgeGraphService should be importable"
def test_tool_storage_and_retrieval(self) -> None:
"""Test storing and retrieving tool metadata."""
if KnowledgeGraphService is None:
pytest.skip("KnowledgeGraphService not implemented yet")
kg_service = KnowledgeGraphService()
tool_data = {
"id": "test_tool",
"name": "Test Tool",
"description": "A test MCP tool",
"category": "testing",
"capabilities": ["test_capability"],
}
# Store tool
kg_service.store_tool(tool_data)
# Retrieve tool
retrieved = kg_service.get_tool("test_tool")
assert retrieved is not None
assert retrieved["id"] == "test_tool"
assert retrieved["name"] == "Test Tool"
def test_tool_search_by_capability(self) -> None:
"""Test searching tools by capabilities."""
if KnowledgeGraphService is None:
pytest.skip("KnowledgeGraphService not implemented yet")
kg_service = KnowledgeGraphService()
# Mock tools with different capabilities
tools = [
{"id": "tool1", "capabilities": ["summarization", "text_analysis"]},
{"id": "tool2", "capabilities": ["image_generation", "creativity"]},
{"id": "tool3", "capabilities": ["translation", "language_processing"]},
]
for tool in tools:
kg_service.store_tool(tool)
# Search by capability
text_tools = kg_service.find_tools_by_capability("text_analysis")
assert len(text_tools) >= 1
assert any(tool["id"] == "tool1" for tool in text_tools)
@pytest.mark.integration
class TestToolDiscoveryIntegration:
"""Test integration between discovery engine components."""
def test_end_to_end_tool_discovery(self) -> None:
"""Test complete tool discovery workflow."""
if ToolDiscoveryEngine is None:
pytest.skip("ToolDiscoveryEngine not implemented yet")
engine = ToolDiscoveryEngine()
# User query from MVP 1 example
query = "I want to summarize a news article"
# Should return relevant tools with similarity scores
results = engine.search_tools(ToolSearchCriteria(query=query, max_results=3))
assert isinstance(results, list)
if results:
top_result = results[0]
# Should have similarity score and tool metadata
assert hasattr(top_result, "similarity_score") or "score" in top_result
assert hasattr(top_result, "tool") or "tool" in top_result
def test_mvp1_demo_scenario(self) -> None:
"""Test the exact MVP 1 demo scenario."""
if ToolDiscoveryEngine is None:
pytest.skip("ToolDiscoveryEngine not implemented yet")
engine = ToolDiscoveryEngine()
# Load the curated 3-5 tools
tools = engine.load_curated_tools()
assert 3 <= len(tools) <= 5
# Test the MVP 1 example query
query = "I want to summarize a news article"
criteria = ToolSearchCriteria(query=query, max_results=3)
results = engine.search_tools(criteria)
# Should return top 2-3 relevant tools as per MVP 1 spec
assert len(results) <= 3
assert len(results) >= 1 # Should find at least one relevant tool
# Results should include tool name and description for Gradio UI
for result in results:
tool = getattr(result, "tool", result)
assert "name" in tool or hasattr(tool, "name")
assert "description" in tool or hasattr(tool, "description")