--- title: AI Agent Architecture description: Multi-agent system design and coordination patterns in KGraph-MCP --- # AI Agent Architecture Comprehensive documentation of KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents. ## ๐Ÿค– Agent System Overview KGraph-MCP employs a **Multi-Agent Orchestration Architecture** where specialized AI agents collaborate to understand user goals, discover appropriate tools, execute complex workflows, and continuously learn from interactions. ### **Core Agent Framework** ```mermaid graph TB subgraph "๐Ÿง  Agent Coordination Layer" Controller[Agent Controller
Coordination & Communication] Scheduler[Task Scheduler
Agent Workload Management] Monitor[Agent Monitor
Health & Performance] end subgraph "๐ŸŽฏ Specialized Agents" subgraph "Planner Agent" PA_Core[Core Planning Engine] PA_NLP[Natural Language Processor] PA_Goals[Goal Decomposition] PA_Strategy[Strategy Formation] end subgraph "Selector Agent" SA_Core[Core Selection Engine] SA_Query[Knowledge Query] SA_Match[Capability Matching] SA_Rank[Tool Ranking] end subgraph "Executor Agent" EA_Core[Core Execution Engine] EA_Invoke[Tool Invocation] EA_Monitor[Execution Monitoring] EA_Coord[Multi-tool Coordination] end subgraph "Supervisor Agent" SV_Core[Core Supervision Engine] SV_Validate[Result Validation] SV_Quality[Quality Assurance] SV_Learn[Learning Engine] end end subgraph "๐Ÿ—„๏ธ Shared Resources" Knowledge[Knowledge Graph] Memory[Shared Memory] Context[Execution Context] Metrics[Performance Metrics] end Controller --> PA_Core Controller --> SA_Core Controller --> EA_Core Controller --> SV_Core Scheduler --> PA_Core Scheduler --> SA_Core Scheduler --> EA_Core Scheduler --> SV_Core Monitor --> Metrics Metrics --> Knowledge PA_Core --> SA_Core SA_Core --> EA_Core EA_Core --> SV_Core SV_Core --> PA_Core PA_Core --> Knowledge SA_Core --> Knowledge EA_Core --> Context SV_Core --> Memory style Controller fill:#e1f5fe style PA_Core fill:#fff3e0 style SA_Core fill:#e8f5e8 style EA_Core fill:#f3e5f5 style SV_Core fill:#fce4ec ``` ## ๐ŸŽฏ Agent Specializations & Responsibilities ### **1. Planner Agent - Strategic Intelligence** ```mermaid flowchart TD Input[User Input/Goal] --> Parse[Natural Language Parsing] Parse --> Understand[Goal Understanding] Understand --> Decompose[Task Decomposition] Decompose --> Analyze[Dependency Analysis] Analyze --> Prioritize[Priority Assignment] Prioritize --> Sequence[Sequence Planning] Sequence --> Resource[Resource Estimation] Resource --> Risk[Risk Assessment] Risk --> Optimize[Plan Optimization] Optimize --> Validate{Plan Validation} Validate -->|Valid| Execute[Send to Selector] Validate -->|Invalid| Refine[Plan Refinement] Refine --> Decompose Execute --> Monitor[Monitor Execution] Monitor --> Adapt[Plan Adaptation] Adapt --> Learn[Update Planning Models] subgraph "๐Ÿง  Planning Intelligence" Understand Decompose Analyze Optimize end subgraph "๐Ÿ”„ Adaptive Learning" Monitor Adapt Learn end style Input fill:#e3f2fd style Understand fill:#e8f5e8 style Optimize fill:#f3e5f5 style Learn fill:#fce4ec ``` ### **2. Selector Agent - Knowledge Intelligence** ```mermaid graph TB subgraph "๐Ÿ” Tool Discovery Pipeline" Query[Receive Tool Request] Search[Knowledge Graph Search] Filter[Capability Filtering] Match[Requirement Matching] end subgraph "๐Ÿงฎ Similarity & Ranking" Semantic[Semantic Similarity] Vector[Vector Search] Graph[Graph Traversal] Hybrid[Hybrid Scoring] end subgraph "๐ŸŽฏ Selection Logic" Score[Calculate Scores] Rank[Rank Candidates] Filter_Quality[Quality Filtering] Select[Final Selection] end subgraph "๐Ÿ“Š Contextual Factors" Performance[Past Performance] Availability[Tool Availability] Cost[Resource Cost] Constraints[Business Constraints] end Query --> Search Search --> Filter Filter --> Match Match --> Semantic Match --> Vector Match --> Graph Semantic --> Hybrid Vector --> Hybrid Graph --> Hybrid Hybrid --> Score Score --> Rank Rank --> Filter_Quality Filter_Quality --> Select Performance --> Score Availability --> Score Cost --> Score Constraints --> Filter_Quality Select --> Feedback[Update Selection Models] Feedback --> Search style Query fill:#e1f5fe style Semantic fill:#e8f5e8 style Score fill:#f3e5f5 style Select fill:#fff3e0 ``` ### **3. Executor Agent - Operational Intelligence** ```mermaid sequenceDiagram participant Planner as Planner Agent participant Executor as Executor Agent participant Tool1 as MCP Tool 1 participant Tool2 as MCP Tool 2 participant Monitor as Execution Monitor participant Supervisor as Supervisor Agent Planner->>Executor: Execute Plan Note over Executor: Initialize Execution Context Executor->>Executor: Prepare Execution Environment Executor->>Monitor: Start Monitoring loop For Each Step in Plan Executor->>Tool1: Invoke Tool Tool1-->>Executor: Stream Response Executor->>Monitor: Log Progress Monitor->>Supervisor: Validate Intermediate Result Supervisor-->>Monitor: Validation Status alt Validation Successful Executor->>Tool2: Continue with Next Tool else Validation Failed Executor->>Executor: Execute Retry Logic Executor->>Tool1: Retry Tool Invocation end end Executor->>Monitor: Execution Complete Monitor->>Supervisor: Final Validation Supervisor-->>Executor: Final Status Executor->>Planner: Return Results Note over Executor: Update Execution Models ``` ### **4. Supervisor Agent - Quality Intelligence** ```mermaid flowchart TD Start[Receive Execution Data] --> Validate[Validate Results] Validate --> Quality{Quality Check} Quality -->|Pass| Approve[Approve Results] Quality -->|Fail| Analyze[Analyze Failure] Analyze --> Classify[Classify Error Type] Classify --> Decide{Recovery Decision} Decide -->|Retry| Retry[Request Retry] Decide -->|Fallback| Fallback[Activate Fallback] Decide -->|Abort| Abort[Abort Execution] Approve --> Learn[Learn from Success] Retry --> Monitor[Monitor Retry] Fallback --> Monitor Monitor --> Validate Learn --> UpdateKG[Update Knowledge Graph] Abort --> LogFailure[Log Failure Pattern] LogFailure --> UpdateKG UpdateKG --> Improve[Improve Agent Models] Improve --> End[Complete Supervision] subgraph "๐Ÿ” Quality Assurance" Validate Quality Analyze end subgraph "๐Ÿ›ก๏ธ Error Recovery" Classify Decide Retry Fallback end subgraph "๐Ÿ“ˆ Continuous Learning" Learn UpdateKG Improve end style Start fill:#e3f2fd style Quality fill:#e8f5e8 style Learn fill:#f3e5f5 style Improve fill:#fce4ec ``` ## ๐Ÿ”„ Agent Communication Patterns ### **Inter-Agent Communication Protocol** ```mermaid graph TB subgraph "๐Ÿ“ก Communication Layer" MessageBus[Message Bus
Event-Driven Communication] Protocol[Communication Protocol
Standardized Messages] Router[Message Router
Intelligent Routing] Queue[Message Queue
Asynchronous Processing] end subgraph "๐Ÿค Communication Patterns" RequestReply[Request-Reply
Synchronous Communication] PubSub[Publish-Subscribe
Event Broadcasting] Pipeline[Pipeline
Sequential Processing] Broadcast[Broadcast
All-Agent Notifications] end subgraph "๐Ÿ“‹ Message Types" TaskMsg[Task Messages
Planning & Execution] StatusMsg[Status Messages
Progress Updates] DataMsg[Data Messages
Results & Context] ControlMsg[Control Messages
Coordination & Commands] end MessageBus --> RequestReply MessageBus --> PubSub MessageBus --> Pipeline MessageBus --> Broadcast Protocol --> TaskMsg Protocol --> StatusMsg Protocol --> DataMsg Protocol --> ControlMsg Router --> Queue Queue --> MessageBus RequestReply --> TaskMsg PubSub --> StatusMsg Pipeline --> DataMsg Broadcast --> ControlMsg style MessageBus fill:#e1f5fe style RequestReply fill:#e8f5e8 style TaskMsg fill:#f3e5f5 style Router fill:#fff3e0 ``` ### **Agent Coordination Workflow** ```mermaid stateDiagram-v2 [*] --> Idle Idle --> Planning : User Request Received Planning --> ToolSelection : Plan Generated ToolSelection --> Execution : Tools Selected Execution --> Monitoring : Execution Started Monitoring --> Validation : Step Completed Validation --> Execution : Continue Execution Validation --> ErrorHandling : Validation Failed ErrorHandling --> Retry : Recoverable Error ErrorHandling --> Fallback : Non-recoverable Error ErrorHandling --> Abort : Critical Error Retry --> Execution Fallback --> ToolSelection Abort --> Learning Execution --> Completion : All Steps Done Completion --> Learning : Results Validated Learning --> Idle : Models Updated state Planning { [*] --> GoalAnalysis GoalAnalysis --> TaskDecomposition TaskDecomposition --> DependencyMapping DependencyMapping --> PlanGeneration PlanGeneration --> [*] } state Execution { [*] --> ToolInvocation ToolInvocation --> ProgressMonitoring ProgressMonitoring --> ResultCollection ResultCollection --> [*] } state Learning { [*] --> PerformanceAnalysis PerformanceAnalysis --> PatternIdentification PatternIdentification --> ModelUpdate ModelUpdate --> KnowledgeGraphUpdate KnowledgeGraphUpdate --> [*] } ``` ## ๐Ÿง  Agent Intelligence Mechanisms ### **Planner Agent Decision Making** ```mermaid flowchart TD Goal[User Goal] --> Context[Gather Context] Context --> Knowledge[Query Knowledge Base] Knowledge --> Patterns[Identify Patterns] Patterns --> Generate[Generate Plan Options] Generate --> Evaluate[Evaluate Options] Evaluate --> Score[Score Plans] Score --> Select{Select Best Plan} Select -->|Confidence > Threshold| Execute[Execute Plan] Select -->|Confidence < Threshold| Explore[Explore Alternatives] Explore --> Research[Research Domain] Research --> Consult[Consult Other Agents] Consult --> Generate Execute --> Monitor[Monitor Execution] Monitor --> Feedback[Collect Feedback] Feedback --> Learn[Update Planning Model] Learn --> Knowledge subgraph "๐ŸŽฏ Decision Factors" Complexity[Task Complexity] Resources[Available Resources] History[Historical Success] Constraints[User Constraints] end Complexity --> Score Resources --> Score History --> Score Constraints --> Evaluate style Goal fill:#e3f2fd style Generate fill:#e8f5e8 style Select fill:#f3e5f5 style Learn fill:#fce4ec ``` ### **Selector Agent Reasoning Process** ```mermaid graph TB subgraph "๐Ÿ” Tool Analysis Pipeline" Capability[Tool Capability Analysis] Compatibility[Compatibility Check] Performance[Performance History] Context[Context Relevance] end subgraph "๐Ÿงฎ Scoring Algorithm" Semantic[Semantic Similarity
0.0 - 1.0] Functional[Functional Match
0.0 - 1.0] Quality[Quality Score
0.0 - 1.0] Availability[Availability Score
0.0 - 1.0] end subgraph "โš–๏ธ Weighted Decision" Weights[Configure Weights
ฮฑ, ฮฒ, ฮณ, ฮด] Combine[Weighted Combination
ฮฑร—S + ฮฒร—F + ฮณร—Q + ฮดร—A] Threshold[Apply Threshold
Min Score Required] Rank[Final Ranking
Top K Tools] end Capability --> Semantic Compatibility --> Functional Performance --> Quality Context --> Availability Semantic --> Weights Functional --> Weights Quality --> Weights Availability --> Weights Weights --> Combine Combine --> Threshold Threshold --> Rank Rank --> Feedback[Learning Feedback] Feedback --> Capability style Capability fill:#e1f5fe style Semantic fill:#e8f5e8 style Combine fill:#f3e5f5 style Rank fill:#fff3e0 ``` ### **Executor Agent Resource Management** ```mermaid graph LR subgraph "๐Ÿ“Š Resource Pool" CPU[CPU Resources] Memory[Memory Pool] Network[Network Bandwidth] Connections[Tool Connections] end subgraph "๐ŸŽฏ Allocation Strategy" Assess[Assess Requirements] Reserve[Reserve Resources] Monitor[Monitor Usage] Release[Release Resources] end subgraph "โšก Optimization" LoadBalance[Load Balancing] Queue[Request Queuing] Priority[Priority Management] Scaling[Dynamic Scaling] end subgraph "๐Ÿ›ก๏ธ Safety Mechanisms" Limits[Resource Limits] Timeout[Timeout Handling] Fallback[Fallback Resources] Recovery[Recovery Procedures] end CPU --> Assess Memory --> Assess Network --> Reserve Connections --> Reserve Assess --> LoadBalance Reserve --> Queue Monitor --> Priority Release --> Scaling LoadBalance --> Limits Queue --> Timeout Priority --> Fallback Scaling --> Recovery style CPU fill:#e1f5fe style Assess fill:#e8f5e8 style LoadBalance fill:#f3e5f5 style Limits fill:#ffebee ``` ## ๐Ÿ“ˆ Agent Learning & Adaptation ### **Continuous Learning Architecture** ```mermaid flowchart TD Experience[Execution Experience] --> Collect[Collect Data] Collect --> Process[Process Patterns] Process --> Extract[Extract Insights] Extract --> ModelUpdate[Update Agent Models] ModelUpdate --> Validate[Validate Improvements] Validate --> Deploy{Deploy Updates?} Deploy -->|Yes| Apply[Apply to Production] Deploy -->|No| Rollback[Rollback Changes] Apply --> Monitor[Monitor Performance] Monitor --> Measure[Measure Impact] Measure --> Feedback[Generate Feedback] Feedback --> Experience Rollback --> Experience subgraph "๐Ÿง  Learning Components" PatternRecognition[Pattern Recognition] ReinforcementLearning[Reinforcement Learning] TransferLearning[Transfer Learning] MetaLearning[Meta Learning] end subgraph "๐Ÿ“Š Learning Metrics" Success[Success Rate] Efficiency[Efficiency Improvement] UserSatisfaction[User Satisfaction] ToolPerformance[Tool Performance] end Process --> PatternRecognition Extract --> ReinforcementLearning ModelUpdate --> TransferLearning Validate --> MetaLearning Measure --> Success Measure --> Efficiency Measure --> UserSatisfaction Measure --> ToolPerformance style Experience fill:#e3f2fd style Extract fill:#e8f5e8 style Apply fill:#f3e5f5 style PatternRecognition fill:#fce4ec ``` ### **Agent Performance Optimization** ```mermaid graph TB subgraph "๐Ÿ“Š Performance Monitoring" ResponseTime[Response Time] Accuracy[Decision Accuracy] ResourceUsage[Resource Usage] UserFeedback[User Feedback] end subgraph "๐Ÿ” Analysis Engine" Baseline[Establish Baseline] Compare[Compare Performance] Identify[Identify Bottlenecks] Root[Root Cause Analysis] end subgraph "โšก Optimization Strategies" Algorithm[Algorithm Tuning] Parallel[Parallelization] Cache[Caching Strategy] Load[Load Distribution] end subgraph "โœ… Validation & Deployment" Test[A/B Testing] Gradual[Gradual Rollout] Monitor[Monitor Changes] Rollback[Rollback if Needed] end ResponseTime --> Baseline Accuracy --> Compare ResourceUsage --> Identify UserFeedback --> Root Baseline --> Algorithm Compare --> Parallel Identify --> Cache Root --> Load Algorithm --> Test Parallel --> Gradual Cache --> Monitor Load --> Rollback style ResponseTime fill:#e1f5fe style Baseline fill:#e8f5e8 style Algorithm fill:#f3e5f5 style Test fill:#fff3e0 ``` ## ๐Ÿ”’ Agent Security & Reliability ### **Security Architecture** ```mermaid graph TB subgraph "๐Ÿ›ก๏ธ Security Layers" Authentication[Agent Authentication] Authorization[Authorization Control] Encryption[Communication Encryption] Validation[Input Validation] end subgraph "๐Ÿ” Trust Management" Identity[Agent Identity Verification] Reputation[Reputation System] Permissions[Permission Management] Audit[Audit Logging] end subgraph "๐Ÿšจ Threat Protection" Anomaly[Anomaly Detection] Intrusion[Intrusion Detection] Isolation[Agent Isolation] Recovery[Security Recovery] end Authentication --> Identity Authorization --> Reputation Encryption --> Permissions Validation --> Audit Identity --> Anomaly Reputation --> Intrusion Permissions --> Isolation Audit --> Recovery style Authentication fill:#e1f5fe style Identity fill:#e8f5e8 style Anomaly fill:#ffebee ``` --- ## ๐Ÿ”— Related Documentation - [System Architecture Overview](overview.md) - Complete system design - [Data Flow Architecture](data-flow.md) - Information processing patterns - [Knowledge Graph Architecture](knowledge-graph.md) - Knowledge representation - [API Documentation](../api/agents/index.md) - Agent API interfaces *This agent architecture documentation provides comprehensive insights into KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.*