# 🔄 MCP Sampling Implementation ## 📋 **Task Overview** **Task ID**: Task-1.3.1 **Phase**: Phase 1 - Core Enhancement **Priority**: Medium-High **Duration**: 3 weeks **Owner**: MCP Protocol Team ## 🎯 **Objective** Complete MCP protocol compliance by implementing `sampling/createMessage` support with KG-enhanced policies, building on the existing excellent MCP integration infrastructure. ## 📊 **Current Status** - ✅ **Excellent MCP Foundation**: Live MCP integration with retry logic and error handling - ✅ **Protocol Infrastructure**: HTTP calls to MCP servers working - ✅ **Ontological Support**: MCPTool, MCPPrompt classes support sampling metadata - ⚠️ **Missing**: `sampling/createMessage` endpoint implementation - ⚠️ **Gap**: KG-enhanced sampling policies and human-in-loop approval ## 📋 **Requirements** - [ ] MCP Client infrastructure for sampling requests - [ ] `sampling/createMessage` endpoint implementation - [ ] KG policy integration for intelligent sampling - [ ] Human-in-loop approval UI for sampling requests - [ ] Multi-model LLM routing for sampling - [ ] Sampling request construction and validation - [ ] Integration with existing MCP error handling ## 💻 **Implementation Details** ```python class MCPSamplingHandler: """Handle MCP sampling/createMessage requests with KG enhancement.""" def __init__(self, kg: InMemoryKG, mcp_client: MCPClient): self.kg = kg self.mcp_client = mcp_client self.sampling_policies = SamplingPolicyEngine() def process_sampling_request(self, request: SamplingRequest) -> SamplingResponse: """Process sampling with KG-enhanced policies.""" def create_message_with_sampling(self, tool_id: str, context: dict) -> MessageResult: """Create optimized messages using KG knowledge.""" def get_sampling_policy(self, tool: MCPTool) -> SamplingPolicy: """Generate KG-based sampling policies.""" class SamplingPolicyEngine: """Generate intelligent sampling policies using KG knowledge.""" def generate_policy(self, tool: MCPTool, context: dict) -> SamplingPolicy: """Create context-aware sampling policies.""" class HumanApprovalHandler: """Handle human-in-loop approval for sampling requests.""" ``` ## ✅ **Acceptance Criteria** - [ ] `sampling/createMessage` endpoint functional - [ ] MCP client infrastructure supports sampling protocol - [ ] KG-enhanced sampling policies operational - [ ] Human approval UI integrated with existing Gradio interface - [ ] Multi-model LLM routing working - [ ] Sampling request validation and error handling - [ ] Integration with existing MCP tools seamless - [ ] Performance meets existing MCP call standards - [ ] Documentation updated with sampling capabilities ## 🔗 **Dependencies** - **Builds on**: Existing excellent MCP integration infrastructure - **Uses**: Current MCPTool ontology and error handling - **Extends**: Existing FastAPI backend and Gradio UI ## 📈 **Success Metrics** - Sampling request success rate > 95% - Human approval workflow < 30 seconds - KG policy generation accuracy > 90% - Integration with existing tools seamless - MCP protocol compliance verified ## 🏷️ **Tags** mcp-protocol, sampling, human-in-loop, llm-routing, protocol-compliance ## 📂 **File Structure** ``` mcp_services/ sampling/ __init__.py handler.py policies.py approval.py tests/ mcp_services/ sampling/ test_sampling_handler.py test_policies.py test_approval.py ``` ## 🔄 **Integration Points** - Extend existing MCP integration in McpExecutorAgent - Use current error handling and retry mechanisms - Integrate with existing Gradio UI for human approval - Build on current FastAPI backend architecture ## 💡 **Enhancement Strategy** - Leverage existing MCPTool metadata for sampling policies - Use current prompt templates for sampling optimization - Integrate with existing vector search for context enhancement - Build on current multi-agent coordination for sampling workflows ## 📋 **Implementation Phases** **Week 1**: MCP Client Infrastructure + Basic Sampling **Week 2**: KG Policy Engine + Human Approval UI **Week 3**: Multi-model Routing + Integration Testing