# 🗄️ Neo4j Infrastructure Setup & Migration ## 📋 **Task Overview** **Task ID**: Task-1.2.1 **Phase**: Phase 1 - Core Enhancement **Priority**: High **Duration**: 4 weeks **Owner**: Infrastructure + Backend Team ## 🎯 **Objective** Migrate from the excellent InMemoryKG foundation to a production-ready Neo4j + Qdrant hybrid system for scaling to 10K+ nodes while preserving all existing functionality and comprehensive ontology. ## 📊 **Current Status** - ✅ **Excellent Foundation**: InMemoryKG is production-ready with comprehensive ontology - ✅ **Rich Data Model**: MCPTool, MCPPrompt, PlannedStep classes are mature - ✅ **Vector Search**: Semantic similarity working with numpy implementation - ⚠️ **Scalability Limit**: Memory-constrained, needs persistent storage - ⚠️ **Production Gap**: No persistent graph database for enterprise scale ## 📋 **Requirements** - [ ] Neo4j database setup (Docker + Cloud deployment options) - [ ] Schema migration preserving existing ontology - [ ] Qdrant vector database integration for embeddings - [ ] Hybrid search implementation (graph + vector) - [ ] Data migration scripts with validation - [ ] Performance optimization for <100ms queries - [ ] Backward compatibility during migration ## 💻 **Implementation Details** ```python class Neo4jKG: """Production Neo4j knowledge graph implementation.""" def __init__(self, neo4j_uri: str, qdrant_config: QdrantConfig): self.neo4j_driver = GraphDatabase.driver(neo4j_uri) self.qdrant_client = QdrantClient(**qdrant_config) def migrate_from_memory_kg(self, memory_kg: InMemoryKG) -> MigrationResult: """Migrate existing InMemoryKG data to Neo4j.""" def create_tool_node(self, tool: MCPTool) -> str: """Create tool node in Neo4j with relationships.""" def hybrid_search(self, query_embedding: list[float], filters: dict) -> list[str]: """Combine Neo4j graph traversal with Qdrant vector search.""" class QdrantVectorStore: """Qdrant vector database for embeddings.""" def store_embedding(self, entity_id: str, embedding: list[float]) -> None: def similarity_search(self, query: list[float], top_k: int) -> list[str]: ``` ## ✅ **Acceptance Criteria** - [ ] Neo4j database operational (local + cloud deployment) - [ ] All existing MCPTool and MCPPrompt data migrated successfully - [ ] Vector embeddings migrated to Qdrant - [ ] Hybrid search functional with <100ms response time - [ ] All existing API endpoints continue to work - [ ] Backward compatibility mode for gradual migration - [ ] Data integrity validation passes 100% - [ ] Performance benchmarks meet targets - [ ] Documentation updated with new architecture ## 🔗 **Dependencies** - **Builds on**: Existing InMemoryKG (excellent foundation) - **Preserves**: All current functionality and API contracts - **Enables**: Production scalability and persistence ## 📈 **Success Metrics** - Query response time <100ms for 10K+ nodes - Data migration accuracy 100% - Existing functionality preservation 100% - Vector search performance equivalent or better - Neo4j cluster handles concurrent requests ## 🏷️ **Tags** database-migration, neo4j, vector-database, scalability, infrastructure ## 📂 **Migration Strategy** ``` Phase 1: Infrastructure Setup (Week 1) - Neo4j + Qdrant deployment - Connection and authentication Phase 2: Schema Design (Week 2) - Cypher schema matching current ontology - Relationship mappings - Index optimization Phase 3: Data Migration (Week 3) - Migration scripts - Validation procedures - Performance testing Phase 4: Integration & Testing (Week 4) - API integration - End-to-end testing - Performance optimization ``` ## 🔄 **Integration Points** - Preserve existing InMemoryKG interface for backward compatibility - Extend current vector search capabilities - Maintain all current API endpoints - Support existing test suite without modification ## 💡 **Preservation Strategy** - Keep InMemoryKG as fallback option - Gradual migration with feature flags - Preserve existing comprehensive ontology - Maintain current excellent test coverage