---
title: Data Flow
description: Data Flow patterns and information processing in KGraph-MCP
---
# Data Flow Architecture
Comprehensive documentation of how data flows through KGraph-MCP's intelligent orchestration system, from user input to tool execution and knowledge graph updates.
## 🌊 Overview
KGraph-MCP implements a sophisticated data flow architecture that enables:
- **Semantic Processing**: Natural language understanding and goal extraction
- **Knowledge Retrieval**: Intelligent tool discovery through graph querying
- **Execution Coordination**: Multi-agent coordination for complex workflows
- **Continuous Learning**: Knowledge graph enhancement from execution feedback
## 🔄 Primary Data Flow Patterns
### **1. User Request Processing Flow**
```mermaid
flowchart TD
Start([User Input]) --> Validate{Input Validation}
Validate -->|Valid| Parse[Parse Natural Language]
Validate -->|Invalid| Error[Return Error]
Parse --> Extract[Extract Goals & Context]
Extract --> Analyze[Analyze Requirements]
Analyze --> Plan[Generate Execution Plan]
Plan --> QueryKG[Query Knowledge Graph]
QueryKG --> RankTools[Rank Available Tools]
RankTools --> SelectTools[Select Best Tools]
SelectTools --> Execute[Execute Tool Chain]
Execute --> Monitor[Monitor Execution]
Monitor --> Validate_Results{Validate Results}
Validate_Results -->|Success| Format[Format Response]
Validate_Results -->|Failure| Retry{Retry Logic}
Retry -->|Yes| Execute
Retry -->|No| Fallback[Fallback Strategy]
Format --> UpdateKG[Update Knowledge Graph]
UpdateKG --> Return([Return to User])
Fallback --> Return
Error --> Return
style Start fill:#e3f2fd
style Parse fill:#e8f5e8
style QueryKG fill:#f3e5f5
style Execute fill:#fff3e0
style Return fill:#e1f5fe
```
### **2. Knowledge Graph Information Flow**
```mermaid
flowchart LR
subgraph "📥 Data Ingestion Pipeline"
Discovery[MCP Server Discovery]
Extraction[Metadata Extraction]
Validation[Schema Validation]
Transformation[Data Transformation]
end
subgraph "🧠 Processing Pipeline"
Embedding[Vector Embedding]
Analysis[Capability Analysis]
Relation[Relationship Detection]
Classification[Tool Classification]
end
subgraph "💾 Storage Pipeline"
GraphDB[(Graph Database
Neo4j)]
VectorDB[(Vector Database
Qdrant)]
MetadataDB[(Metadata Store
JSON)]
CacheLayer[(Redis Cache)]
end
subgraph "🔍 Query Pipeline"
SemanticSearch[Semantic Search]
GraphQuery[Graph Traversal]
HybridRetrieval[Hybrid Retrieval]
RankingEngine[Ranking Engine]
end
Discovery --> Extraction
Extraction --> Validation
Validation --> Transformation
Transformation --> Embedding
Transformation --> Analysis
Transformation --> Relation
Transformation --> Classification
Embedding --> VectorDB
Analysis --> GraphDB
Relation --> GraphDB
Classification --> MetadataDB
VectorDB --> SemanticSearch
GraphDB --> GraphQuery
MetadataDB --> HybridRetrieval
CacheLayer --> RankingEngine
SemanticSearch --> RankingEngine
GraphQuery --> RankingEngine
HybridRetrieval --> RankingEngine
style Discovery fill:#e1f5fe
style Embedding fill:#e8f5e8
style GraphDB fill:#f3e5f5
style SemanticSearch fill:#fff3e0
```
### **3. Agent Coordination Data Flow**
```mermaid
sequenceDiagram
participant User
participant API as FastAPI
participant Planner as Planner Agent
participant KG as Knowledge Graph
participant Selector as Selector Agent
participant Executor as Executor Agent
participant MCP as MCP Server
participant Supervisor as Supervisor Agent
User->>API: Submit Request
API->>Planner: Forward Request
Note over Planner: Goal Analysis & Decomposition
Planner->>Planner: Parse Natural Language
Planner->>Planner: Extract Objectives
Planner->>Planner: Generate Sub-tasks
Planner->>Selector: Request Tool Selection
Note over Selector,KG: Tool Discovery Process
Selector->>KG: Query Available Tools
KG-->>Selector: Return Tool Metadata
Selector->>KG: Query Tool Relationships
KG-->>Selector: Return Capability Graph
Note over Selector: Tool Ranking & Selection
Selector->>Selector: Calculate Similarity Scores
Selector->>Selector: Apply Business Rules
Selector-->>Planner: Return Ranked Tools
Planner->>Executor: Execute Plan
Note over Executor,MCP: Tool Execution Loop
loop For Each Tool in Plan
Executor->>MCP: Invoke Tool
MCP-->>Executor: Stream Response
Executor->>Supervisor: Validate Response
Note over Supervisor: Quality Check
Supervisor-->>Executor: Validation Result
end
Executor->>Planner: Execution Complete
Note over Planner: Result Aggregation
Planner->>KG: Update Usage Statistics
Planner->>API: Return Final Results
API->>User: Response with Results
Note over KG: Learning Update
KG->>KG: Update Tool Rankings
KG->>KG: Enhance Relationships
```
## 📊 Data Processing Layers
### **Layer 1: Input Processing & Validation**
```mermaid
graph TD
subgraph "🔍 Input Analysis"
RawInput[Raw User Input]
NLP[Natural Language Processing]
Intent[Intent Recognition]
Context[Context Extraction]
end
subgraph "✅ Validation Layer"
Schema[Schema Validation]
Security[Security Checks]
Rate[Rate Limiting]
Auth[Authentication]
end
subgraph "🎯 Goal Processing"
Parse[Goal Parsing]
Decompose[Task Decomposition]
Priority[Priority Assignment]
Dependencies[Dependency Analysis]
end
RawInput --> NLP
NLP --> Intent
Intent --> Context
Context --> Schema
Schema --> Security
Security --> Rate
Rate --> Auth
Auth --> Parse
Parse --> Decompose
Decompose --> Priority
Priority --> Dependencies
style RawInput fill:#e3f2fd
style Schema fill:#e8f5e8
style Parse fill:#f3e5f5
```
### **Layer 2: Knowledge Graph Operations**
```mermaid
flowchart TB
subgraph "🔍 Query Processing"
QueryInput[Query Input]
QueryParse[Query Parsing]
QueryOpt[Query Optimization]
QueryExec[Query Execution]
end
subgraph "📊 Graph Operations"
Traversal[Graph Traversal]
Aggregation[Data Aggregation]
Filtering[Result Filtering]
Ranking[Result Ranking]
end
subgraph "🧮 Vector Operations"
Similarity[Similarity Search]
Clustering[Tool Clustering]
Embedding[Embedding Lookup]
Indexing[Index Operations]
end
subgraph "🔄 Update Operations"
Insert[Data Insertion]
Update[Data Updates]
Delete[Data Deletion]
Optimize[Index Optimization]
end
QueryInput --> QueryParse
QueryParse --> QueryOpt
QueryOpt --> QueryExec
QueryExec --> Traversal
QueryExec --> Similarity
Traversal --> Aggregation
Aggregation --> Filtering
Filtering --> Ranking
Similarity --> Clustering
Clustering --> Embedding
Embedding --> Indexing
Ranking --> Insert
Insert --> Update
Update --> Delete
Delete --> Optimize
style QueryInput fill:#e1f5fe
style Traversal fill:#e8f5e8
style Similarity fill:#f3e5f5
style Insert fill:#fff3e0
```
### **Layer 3: Tool Execution & Monitoring**
```mermaid
graph LR
subgraph "🚀 Execution Pipeline"
Prepare[Prepare Execution]
Invoke[Tool Invocation]
Monitor[Real-time Monitoring]
Collect[Result Collection]
end
subgraph "🔄 State Management"
StateInit[Initialize State]
StateUpdate[Update State]
StateSync[Synchronize State]
StateCleanup[Cleanup State]
end
subgraph "📊 Performance Tracking"
Metrics[Collect Metrics]
Timing[Execution Timing]
Resource[Resource Usage]
Quality[Quality Metrics]
end
subgraph "🛡️ Error Handling"
Detect[Error Detection]
Classify[Error Classification]
Recover[Recovery Strategy]
Fallback[Fallback Options]
end
Prepare --> StateInit
StateInit --> Invoke
Invoke --> Monitor
Monitor --> StateUpdate
Monitor --> Metrics
Metrics --> Timing
Timing --> Resource
Resource --> Quality
Monitor --> Detect
Detect --> Classify
Classify --> Recover
Recover --> Fallback
Collect --> StateSync
StateSync --> StateCleanup
style Prepare fill:#e3f2fd
style StateInit fill:#e8f5e8
style Metrics fill:#f3e5f5
style Detect fill:#ffebee
```
## 🔄 Feedback and Learning Loops
### **Continuous Knowledge Enhancement**
```mermaid
flowchart TD
ExecutionData[Execution Results] --> Analyze[Analyze Performance]
Analyze --> Patterns[Identify Patterns]
Patterns --> Insights[Extract Insights]
Insights --> UpdateRankings[Update Tool Rankings]
UpdateRankings --> UpdateRelations[Update Relationships]
UpdateRelations --> UpdateEmbeddings[Update Embeddings]
UpdateEmbeddings --> ValidateChanges{Validate Changes}
ValidateChanges -->|Valid| ApplyChanges[Apply to Knowledge Graph]
ValidateChanges -->|Invalid| RevertChanges[Revert Changes]
ApplyChanges --> MonitorImpact[Monitor Impact]
MonitorImpact --> MeasureImprovement[Measure Improvement]
MeasureImprovement --> FeedbackLoop[Feedback to Analysis]
FeedbackLoop --> Analyze
RevertChanges --> LogError[Log Error]
LogError --> Analyze
subgraph "📈 Learning Metrics"
MonitorImpact
MeasureImprovement
FeedbackLoop
end
style ExecutionData fill:#e3f2fd
style Insights fill:#e8f5e8
style ApplyChanges fill:#f3e5f5
style MonitorImpact fill:#fff3e0
```
## 📈 Performance Optimization Patterns
### **Caching Strategy**
```mermaid
graph TB
subgraph "🔄 Cache Layers"
L1[L1: In-Memory Cache
Agent State & Results]
L2[L2: Redis Cache
Query Results & Embeddings]
L3[L3: Persistent Cache
Tool Metadata & Rankings]
end
subgraph "📊 Cache Operations"
Read[Cache Read]
Write[Cache Write]
Invalidate[Cache Invalidation]
Refresh[Cache Refresh]
end
subgraph "🎯 Cache Policies"
TTL[Time-to-Live Policy]
LRU[Least Recently Used]
Priority[Priority-based Eviction]
Dependency[Dependency Invalidation]
end
Request[Incoming Request] --> Read
Read --> Hit{Cache Hit?}
Hit -->|Yes| Return[Return Cached Result]
Hit -->|No| Compute[Compute Result]
Compute --> Write
Write --> L1
Write --> L2
Write --> L3
L1 --> TTL
L2 --> LRU
L3 --> Priority
Update[Data Update] --> Invalidate
Invalidate --> Dependency
Dependency --> Refresh
style Request fill:#e3f2fd
style Hit fill:#e8f5e8
style L1 fill:#f3e5f5
style TTL fill:#fff3e0
```
### **Stream Processing Architecture**
```mermaid
flowchart LR
subgraph "📥 Input Streams"
UserStream[User Requests]
ExecutionStream[Tool Execution Events]
FeedbackStream[Learning Feedback]
SystemStream[System Metrics]
end
subgraph "🔄 Processing Pipeline"
Router[Event Router]
Transform[Data Transformation]
Enrich[Context Enrichment]
Aggregate[Event Aggregation]
end
subgraph "📊 Output Channels"
UIChannel[UI Updates]
APIChannel[API Responses]
KGChannel[Knowledge Graph Updates]
LogChannel[Logging & Metrics]
end
UserStream --> Router
ExecutionStream --> Router
FeedbackStream --> Router
SystemStream --> Router
Router --> Transform
Transform --> Enrich
Enrich --> Aggregate
Aggregate --> UIChannel
Aggregate --> APIChannel
Aggregate --> KGChannel
Aggregate --> LogChannel
style UserStream fill:#e1f5fe
style Router fill:#e8f5e8
style Transform fill:#f3e5f5
style UIChannel fill:#fff3e0
```
## 🔗 Data Flow Integration Points
### **External System Integration**
```mermaid
graph TB
subgraph "🌐 External Systems"
MCPServers[MCP Servers]
APIs[External APIs]
Databases[External Databases]
Services[Cloud Services]
end
subgraph "🔌 Integration Layer"
Adapters[Protocol Adapters]
Connectors[Service Connectors]
Transformers[Data Transformers]
Validators[Response Validators]
end
subgraph "🛡️ Reliability Layer"
Retry[Retry Logic]
Circuit[Circuit Breakers]
Timeout[Timeout Handling]
Fallback[Fallback Mechanisms]
end
subgraph "📊 Monitoring Layer"
Health[Health Checks]
Metrics[Performance Metrics]
Alerts[Alert Management]
Logs[Audit Logging]
end
MCPServers --> Adapters
APIs --> Connectors
Databases --> Transformers
Services --> Validators
Adapters --> Retry
Connectors --> Circuit
Transformers --> Timeout
Validators --> Fallback
Retry --> Health
Circuit --> Metrics
Timeout --> Alerts
Fallback --> Logs
style MCPServers fill:#e1f5fe
style Adapters fill:#e8f5e8
style Retry fill:#f3e5f5
style Health fill:#fff3e0
```
## 📋 Data Quality & Governance
### **Data Quality Pipeline**
```mermaid
flowchart TD
Input[Incoming Data] --> Validate[Data Validation]
Validate --> Cleanse[Data Cleansing]
Cleanse --> Enrich[Data Enrichment]
Enrich --> Quality{Quality Check}
Quality -->|Pass| Store[Store Data]
Quality -->|Fail| Quarantine[Quarantine Data]
Store --> Index[Update Indices]
Index --> Monitor[Monitor Quality]
Quarantine --> Review[Manual Review]
Review --> Fix[Fix Data Issues]
Fix --> Validate
Monitor --> Report[Quality Reports]
Report --> Improve[Process Improvement]
Improve --> Validate
style Input fill:#e3f2fd
style Validate fill:#e8f5e8
style Quality fill:#fff3e0
style Store fill:#f3e5f5
style Quarantine fill:#ffebee
```
---
## 🔗 Related Documentation
- [System Architecture Overview](overview.md) - High-level system design
- [Agent Architecture](agents.md) - Agent coordination patterns
- [Knowledge Graph Architecture](knowledge-graph.md) - Graph data structures
- [API Documentation](../api/index.md) - API endpoints and data formats
*This data flow documentation provides detailed insights into how information moves through KGraph-MCP's intelligent orchestration system, enabling efficient and reliable MCP tool coordination.*