--- title: Data Flow description: Data Flow patterns and information processing in KGraph-MCP --- # Data Flow Architecture Comprehensive documentation of how data flows through KGraph-MCP's intelligent orchestration system, from user input to tool execution and knowledge graph updates. ## 🌊 Overview KGraph-MCP implements a sophisticated data flow architecture that enables: - **Semantic Processing**: Natural language understanding and goal extraction - **Knowledge Retrieval**: Intelligent tool discovery through graph querying - **Execution Coordination**: Multi-agent coordination for complex workflows - **Continuous Learning**: Knowledge graph enhancement from execution feedback ## 🔄 Primary Data Flow Patterns ### **1. User Request Processing Flow** ```mermaid flowchart TD Start([User Input]) --> Validate{Input Validation} Validate -->|Valid| Parse[Parse Natural Language] Validate -->|Invalid| Error[Return Error] Parse --> Extract[Extract Goals & Context] Extract --> Analyze[Analyze Requirements] Analyze --> Plan[Generate Execution Plan] Plan --> QueryKG[Query Knowledge Graph] QueryKG --> RankTools[Rank Available Tools] RankTools --> SelectTools[Select Best Tools] SelectTools --> Execute[Execute Tool Chain] Execute --> Monitor[Monitor Execution] Monitor --> Validate_Results{Validate Results} Validate_Results -->|Success| Format[Format Response] Validate_Results -->|Failure| Retry{Retry Logic} Retry -->|Yes| Execute Retry -->|No| Fallback[Fallback Strategy] Format --> UpdateKG[Update Knowledge Graph] UpdateKG --> Return([Return to User]) Fallback --> Return Error --> Return style Start fill:#e3f2fd style Parse fill:#e8f5e8 style QueryKG fill:#f3e5f5 style Execute fill:#fff3e0 style Return fill:#e1f5fe ``` ### **2. Knowledge Graph Information Flow** ```mermaid flowchart LR subgraph "📥 Data Ingestion Pipeline" Discovery[MCP Server Discovery] Extraction[Metadata Extraction] Validation[Schema Validation] Transformation[Data Transformation] end subgraph "🧠 Processing Pipeline" Embedding[Vector Embedding] Analysis[Capability Analysis] Relation[Relationship Detection] Classification[Tool Classification] end subgraph "💾 Storage Pipeline" GraphDB[(Graph Database
Neo4j)] VectorDB[(Vector Database
Qdrant)] MetadataDB[(Metadata Store
JSON)] CacheLayer[(Redis Cache)] end subgraph "🔍 Query Pipeline" SemanticSearch[Semantic Search] GraphQuery[Graph Traversal] HybridRetrieval[Hybrid Retrieval] RankingEngine[Ranking Engine] end Discovery --> Extraction Extraction --> Validation Validation --> Transformation Transformation --> Embedding Transformation --> Analysis Transformation --> Relation Transformation --> Classification Embedding --> VectorDB Analysis --> GraphDB Relation --> GraphDB Classification --> MetadataDB VectorDB --> SemanticSearch GraphDB --> GraphQuery MetadataDB --> HybridRetrieval CacheLayer --> RankingEngine SemanticSearch --> RankingEngine GraphQuery --> RankingEngine HybridRetrieval --> RankingEngine style Discovery fill:#e1f5fe style Embedding fill:#e8f5e8 style GraphDB fill:#f3e5f5 style SemanticSearch fill:#fff3e0 ``` ### **3. Agent Coordination Data Flow** ```mermaid sequenceDiagram participant User participant API as FastAPI participant Planner as Planner Agent participant KG as Knowledge Graph participant Selector as Selector Agent participant Executor as Executor Agent participant MCP as MCP Server participant Supervisor as Supervisor Agent User->>API: Submit Request API->>Planner: Forward Request Note over Planner: Goal Analysis & Decomposition Planner->>Planner: Parse Natural Language Planner->>Planner: Extract Objectives Planner->>Planner: Generate Sub-tasks Planner->>Selector: Request Tool Selection Note over Selector,KG: Tool Discovery Process Selector->>KG: Query Available Tools KG-->>Selector: Return Tool Metadata Selector->>KG: Query Tool Relationships KG-->>Selector: Return Capability Graph Note over Selector: Tool Ranking & Selection Selector->>Selector: Calculate Similarity Scores Selector->>Selector: Apply Business Rules Selector-->>Planner: Return Ranked Tools Planner->>Executor: Execute Plan Note over Executor,MCP: Tool Execution Loop loop For Each Tool in Plan Executor->>MCP: Invoke Tool MCP-->>Executor: Stream Response Executor->>Supervisor: Validate Response Note over Supervisor: Quality Check Supervisor-->>Executor: Validation Result end Executor->>Planner: Execution Complete Note over Planner: Result Aggregation Planner->>KG: Update Usage Statistics Planner->>API: Return Final Results API->>User: Response with Results Note over KG: Learning Update KG->>KG: Update Tool Rankings KG->>KG: Enhance Relationships ``` ## 📊 Data Processing Layers ### **Layer 1: Input Processing & Validation** ```mermaid graph TD subgraph "🔍 Input Analysis" RawInput[Raw User Input] NLP[Natural Language Processing] Intent[Intent Recognition] Context[Context Extraction] end subgraph "✅ Validation Layer" Schema[Schema Validation] Security[Security Checks] Rate[Rate Limiting] Auth[Authentication] end subgraph "🎯 Goal Processing" Parse[Goal Parsing] Decompose[Task Decomposition] Priority[Priority Assignment] Dependencies[Dependency Analysis] end RawInput --> NLP NLP --> Intent Intent --> Context Context --> Schema Schema --> Security Security --> Rate Rate --> Auth Auth --> Parse Parse --> Decompose Decompose --> Priority Priority --> Dependencies style RawInput fill:#e3f2fd style Schema fill:#e8f5e8 style Parse fill:#f3e5f5 ``` ### **Layer 2: Knowledge Graph Operations** ```mermaid flowchart TB subgraph "🔍 Query Processing" QueryInput[Query Input] QueryParse[Query Parsing] QueryOpt[Query Optimization] QueryExec[Query Execution] end subgraph "📊 Graph Operations" Traversal[Graph Traversal] Aggregation[Data Aggregation] Filtering[Result Filtering] Ranking[Result Ranking] end subgraph "🧮 Vector Operations" Similarity[Similarity Search] Clustering[Tool Clustering] Embedding[Embedding Lookup] Indexing[Index Operations] end subgraph "🔄 Update Operations" Insert[Data Insertion] Update[Data Updates] Delete[Data Deletion] Optimize[Index Optimization] end QueryInput --> QueryParse QueryParse --> QueryOpt QueryOpt --> QueryExec QueryExec --> Traversal QueryExec --> Similarity Traversal --> Aggregation Aggregation --> Filtering Filtering --> Ranking Similarity --> Clustering Clustering --> Embedding Embedding --> Indexing Ranking --> Insert Insert --> Update Update --> Delete Delete --> Optimize style QueryInput fill:#e1f5fe style Traversal fill:#e8f5e8 style Similarity fill:#f3e5f5 style Insert fill:#fff3e0 ``` ### **Layer 3: Tool Execution & Monitoring** ```mermaid graph LR subgraph "🚀 Execution Pipeline" Prepare[Prepare Execution] Invoke[Tool Invocation] Monitor[Real-time Monitoring] Collect[Result Collection] end subgraph "🔄 State Management" StateInit[Initialize State] StateUpdate[Update State] StateSync[Synchronize State] StateCleanup[Cleanup State] end subgraph "📊 Performance Tracking" Metrics[Collect Metrics] Timing[Execution Timing] Resource[Resource Usage] Quality[Quality Metrics] end subgraph "🛡️ Error Handling" Detect[Error Detection] Classify[Error Classification] Recover[Recovery Strategy] Fallback[Fallback Options] end Prepare --> StateInit StateInit --> Invoke Invoke --> Monitor Monitor --> StateUpdate Monitor --> Metrics Metrics --> Timing Timing --> Resource Resource --> Quality Monitor --> Detect Detect --> Classify Classify --> Recover Recover --> Fallback Collect --> StateSync StateSync --> StateCleanup style Prepare fill:#e3f2fd style StateInit fill:#e8f5e8 style Metrics fill:#f3e5f5 style Detect fill:#ffebee ``` ## 🔄 Feedback and Learning Loops ### **Continuous Knowledge Enhancement** ```mermaid flowchart TD ExecutionData[Execution Results] --> Analyze[Analyze Performance] Analyze --> Patterns[Identify Patterns] Patterns --> Insights[Extract Insights] Insights --> UpdateRankings[Update Tool Rankings] UpdateRankings --> UpdateRelations[Update Relationships] UpdateRelations --> UpdateEmbeddings[Update Embeddings] UpdateEmbeddings --> ValidateChanges{Validate Changes} ValidateChanges -->|Valid| ApplyChanges[Apply to Knowledge Graph] ValidateChanges -->|Invalid| RevertChanges[Revert Changes] ApplyChanges --> MonitorImpact[Monitor Impact] MonitorImpact --> MeasureImprovement[Measure Improvement] MeasureImprovement --> FeedbackLoop[Feedback to Analysis] FeedbackLoop --> Analyze RevertChanges --> LogError[Log Error] LogError --> Analyze subgraph "📈 Learning Metrics" MonitorImpact MeasureImprovement FeedbackLoop end style ExecutionData fill:#e3f2fd style Insights fill:#e8f5e8 style ApplyChanges fill:#f3e5f5 style MonitorImpact fill:#fff3e0 ``` ## 📈 Performance Optimization Patterns ### **Caching Strategy** ```mermaid graph TB subgraph "🔄 Cache Layers" L1[L1: In-Memory Cache
Agent State & Results] L2[L2: Redis Cache
Query Results & Embeddings] L3[L3: Persistent Cache
Tool Metadata & Rankings] end subgraph "📊 Cache Operations" Read[Cache Read] Write[Cache Write] Invalidate[Cache Invalidation] Refresh[Cache Refresh] end subgraph "🎯 Cache Policies" TTL[Time-to-Live Policy] LRU[Least Recently Used] Priority[Priority-based Eviction] Dependency[Dependency Invalidation] end Request[Incoming Request] --> Read Read --> Hit{Cache Hit?} Hit -->|Yes| Return[Return Cached Result] Hit -->|No| Compute[Compute Result] Compute --> Write Write --> L1 Write --> L2 Write --> L3 L1 --> TTL L2 --> LRU L3 --> Priority Update[Data Update] --> Invalidate Invalidate --> Dependency Dependency --> Refresh style Request fill:#e3f2fd style Hit fill:#e8f5e8 style L1 fill:#f3e5f5 style TTL fill:#fff3e0 ``` ### **Stream Processing Architecture** ```mermaid flowchart LR subgraph "📥 Input Streams" UserStream[User Requests] ExecutionStream[Tool Execution Events] FeedbackStream[Learning Feedback] SystemStream[System Metrics] end subgraph "🔄 Processing Pipeline" Router[Event Router] Transform[Data Transformation] Enrich[Context Enrichment] Aggregate[Event Aggregation] end subgraph "📊 Output Channels" UIChannel[UI Updates] APIChannel[API Responses] KGChannel[Knowledge Graph Updates] LogChannel[Logging & Metrics] end UserStream --> Router ExecutionStream --> Router FeedbackStream --> Router SystemStream --> Router Router --> Transform Transform --> Enrich Enrich --> Aggregate Aggregate --> UIChannel Aggregate --> APIChannel Aggregate --> KGChannel Aggregate --> LogChannel style UserStream fill:#e1f5fe style Router fill:#e8f5e8 style Transform fill:#f3e5f5 style UIChannel fill:#fff3e0 ``` ## 🔗 Data Flow Integration Points ### **External System Integration** ```mermaid graph TB subgraph "🌐 External Systems" MCPServers[MCP Servers] APIs[External APIs] Databases[External Databases] Services[Cloud Services] end subgraph "🔌 Integration Layer" Adapters[Protocol Adapters] Connectors[Service Connectors] Transformers[Data Transformers] Validators[Response Validators] end subgraph "🛡️ Reliability Layer" Retry[Retry Logic] Circuit[Circuit Breakers] Timeout[Timeout Handling] Fallback[Fallback Mechanisms] end subgraph "📊 Monitoring Layer" Health[Health Checks] Metrics[Performance Metrics] Alerts[Alert Management] Logs[Audit Logging] end MCPServers --> Adapters APIs --> Connectors Databases --> Transformers Services --> Validators Adapters --> Retry Connectors --> Circuit Transformers --> Timeout Validators --> Fallback Retry --> Health Circuit --> Metrics Timeout --> Alerts Fallback --> Logs style MCPServers fill:#e1f5fe style Adapters fill:#e8f5e8 style Retry fill:#f3e5f5 style Health fill:#fff3e0 ``` ## 📋 Data Quality & Governance ### **Data Quality Pipeline** ```mermaid flowchart TD Input[Incoming Data] --> Validate[Data Validation] Validate --> Cleanse[Data Cleansing] Cleanse --> Enrich[Data Enrichment] Enrich --> Quality{Quality Check} Quality -->|Pass| Store[Store Data] Quality -->|Fail| Quarantine[Quarantine Data] Store --> Index[Update Indices] Index --> Monitor[Monitor Quality] Quarantine --> Review[Manual Review] Review --> Fix[Fix Data Issues] Fix --> Validate Monitor --> Report[Quality Reports] Report --> Improve[Process Improvement] Improve --> Validate style Input fill:#e3f2fd style Validate fill:#e8f5e8 style Quality fill:#fff3e0 style Store fill:#f3e5f5 style Quarantine fill:#ffebee ``` --- ## 🔗 Related Documentation - [System Architecture Overview](overview.md) - High-level system design - [Agent Architecture](agents.md) - Agent coordination patterns - [Knowledge Graph Architecture](knowledge-graph.md) - Graph data structures - [API Documentation](../api/index.md) - API endpoints and data formats *This data flow documentation provides detailed insights into how information moves through KGraph-MCP's intelligent orchestration system, enabling efficient and reliable MCP tool coordination.*