Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from loadimg import load_img | |
| import spaces | |
| from transformers import AutoModelForImageSegmentation | |
| import torch | |
| from torchvision import transforms | |
| import uuid | |
| import os | |
| # Select device | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"Using device: {device}") | |
| torch.set_float32_matmul_precision(["high", "highest"][0]) | |
| # Load BiRefNet model | |
| birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| "ZhengPeng7/BiRefNet", trust_remote_code=True | |
| ) | |
| birefnet.to(device) | |
| # Preprocessing | |
| transform_image = transforms.Compose( | |
| [ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| def process(image): | |
| image_size = image.size | |
| input_images = transform_image(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| mask = pred_pil.resize(image_size) | |
| image.putalpha(mask) | |
| return image | |
| # Main function: image upload → preview + downloadable PNG | |
| def fn(image): | |
| im = load_img(image, output_type="pil").convert("RGB") | |
| processed_image = process(im) | |
| filename = f"/tmp/processed_{uuid.uuid4().hex}.png" | |
| processed_image.save(filename) | |
| return processed_image, filename | |
| # Gradio interface | |
| demo = gr.Interface( | |
| fn, | |
| inputs=gr.Image(label="Upload an image", sources=["upload"]), | |
| outputs=[ | |
| gr.Image(label="Processed Preview"), | |
| gr.File(label="Download PNG") | |
| ], | |
| title="Background Removal Tool" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(show_error=True) |