solve the concurrent visiting problem in a very inefficient way
Browse files
app.py
CHANGED
|
@@ -167,8 +167,8 @@ def on_image_upload(image, input_size=1024):
|
|
| 167 |
global_image = copy.deepcopy(image)
|
| 168 |
global_image_with_prompt = copy.deepcopy(image)
|
| 169 |
print("Image changed")
|
| 170 |
-
nd_image = np.array(global_image)
|
| 171 |
-
predictor.set_image(nd_image)
|
| 172 |
|
| 173 |
return image
|
| 174 |
|
|
@@ -196,6 +196,7 @@ def segment_with_points(
|
|
| 196 |
):
|
| 197 |
global global_points
|
| 198 |
global global_point_label
|
|
|
|
| 199 |
global global_image_with_prompt
|
| 200 |
|
| 201 |
x, y = evt.index[0], evt.index[1]
|
|
@@ -213,6 +214,9 @@ def segment_with_points(
|
|
| 213 |
)
|
| 214 |
image = global_image_with_prompt
|
| 215 |
|
|
|
|
|
|
|
|
|
|
| 216 |
if ENABLE_ONNX:
|
| 217 |
global_points_np = np.array(global_points)[None]
|
| 218 |
global_point_label_np = np.array(global_point_label)[None]
|
|
@@ -263,6 +267,7 @@ def segment_with_box(
|
|
| 263 |
):
|
| 264 |
global global_box
|
| 265 |
global global_image
|
|
|
|
| 266 |
global global_image_with_prompt
|
| 267 |
|
| 268 |
x, y = evt.index[0], evt.index[1]
|
|
@@ -296,6 +301,8 @@ def segment_with_box(
|
|
| 296 |
)
|
| 297 |
|
| 298 |
global_box_np = np.array(global_box)
|
|
|
|
|
|
|
| 299 |
if ENABLE_ONNX:
|
| 300 |
point_coords = global_box_np.reshape(2, 2)[None]
|
| 301 |
point_labels = np.array([2, 3])[None]
|
|
|
|
| 167 |
global_image = copy.deepcopy(image)
|
| 168 |
global_image_with_prompt = copy.deepcopy(image)
|
| 169 |
print("Image changed")
|
| 170 |
+
# nd_image = np.array(global_image)
|
| 171 |
+
# predictor.set_image(nd_image)
|
| 172 |
|
| 173 |
return image
|
| 174 |
|
|
|
|
| 196 |
):
|
| 197 |
global global_points
|
| 198 |
global global_point_label
|
| 199 |
+
global global_image
|
| 200 |
global global_image_with_prompt
|
| 201 |
|
| 202 |
x, y = evt.index[0], evt.index[1]
|
|
|
|
| 214 |
)
|
| 215 |
image = global_image_with_prompt
|
| 216 |
|
| 217 |
+
nd_image = np.array(global_image)
|
| 218 |
+
predictor.set_image(nd_image)
|
| 219 |
+
|
| 220 |
if ENABLE_ONNX:
|
| 221 |
global_points_np = np.array(global_points)[None]
|
| 222 |
global_point_label_np = np.array(global_point_label)[None]
|
|
|
|
| 267 |
):
|
| 268 |
global global_box
|
| 269 |
global global_image
|
| 270 |
+
global global_image
|
| 271 |
global global_image_with_prompt
|
| 272 |
|
| 273 |
x, y = evt.index[0], evt.index[1]
|
|
|
|
| 301 |
)
|
| 302 |
|
| 303 |
global_box_np = np.array(global_box)
|
| 304 |
+
nd_image = np.array(global_image)
|
| 305 |
+
predictor.set_image(nd_image)
|
| 306 |
if ENABLE_ONNX:
|
| 307 |
point_coords = global_box_np.reshape(2, 2)[None]
|
| 308 |
point_labels = np.array([2, 3])[None]
|