Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,12 +9,18 @@ import time
|
|
| 9 |
from typing import Dict, List, Optional
|
| 10 |
|
| 11 |
ENDPOINT_URL = "https://api.hyperbolic.xyz/v1"
|
|
|
|
| 12 |
OAI_API_KEY = os.getenv('HYPERBOLIC_XYZ_KEY')
|
|
|
|
| 13 |
VERBOSE_SHELL = True
|
|
|
|
| 14 |
todays_date_string = datetime.date.today().strftime("%d %B %Y")
|
| 15 |
|
|
|
|
| 16 |
NAME_OF_SERVICE = "arXiv Paper Search"
|
| 17 |
-
DESCRIPTION_OF_SERVICE =
|
|
|
|
|
|
|
| 18 |
PAPER_SEARCH_FUNCTION_NAME = "search_arxiv_papers"
|
| 19 |
|
| 20 |
functions_list = [
|
|
@@ -27,8 +33,8 @@ functions_list = [
|
|
| 27 |
"type": "object",
|
| 28 |
"properties": {
|
| 29 |
"query": {
|
| 30 |
-
"type": "string",
|
| 31 |
-
"description": "Search query (e.g., 'deep learning', 'quantum computing')"
|
| 32 |
},
|
| 33 |
"max_results": {
|
| 34 |
"type": "integer",
|
|
@@ -63,9 +69,27 @@ After receiving the results back from a function (formatted as {{"name": functio
|
|
| 63 |
|
| 64 |
If the user request does not necessitate a function call, simply respond to the user's query directly."""
|
| 65 |
|
| 66 |
-
def search_arxiv_papers(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
try:
|
|
|
|
| 68 |
search_query = f'all:{query}'
|
|
|
|
|
|
|
| 69 |
base_url = 'http://export.arxiv.org/api/query?'
|
| 70 |
params = {
|
| 71 |
'search_query': search_query,
|
|
@@ -76,8 +100,12 @@ def search_arxiv_papers(query: str, max_results: int = 5, sort_by: str = 'releva
|
|
| 76 |
}
|
| 77 |
query_string = '&'.join([f'{k}={urllib.parse.quote(str(v))}' for k, v in params.items()])
|
| 78 |
url = base_url + query_string
|
|
|
|
|
|
|
| 79 |
response = urllib.request.urlopen(url)
|
| 80 |
feed = feedparser.parse(response.read().decode('utf-8'))
|
|
|
|
|
|
|
| 81 |
papers = []
|
| 82 |
for entry in feed.entries:
|
| 83 |
paper = {
|
|
@@ -90,12 +118,16 @@ def search_arxiv_papers(query: str, max_results: int = 5, sort_by: str = 'releva
|
|
| 90 |
'primary_category': entry.tags[0]['term']
|
| 91 |
}
|
| 92 |
papers.append(paper)
|
|
|
|
|
|
|
| 93 |
time.sleep(3)
|
|
|
|
| 94 |
return {
|
| 95 |
'status': 'success',
|
| 96 |
'total_results': len(papers),
|
| 97 |
'papers': papers
|
| 98 |
}
|
|
|
|
| 99 |
except Exception as e:
|
| 100 |
return {
|
| 101 |
'status': 'error',
|
|
@@ -104,6 +136,7 @@ def search_arxiv_papers(query: str, max_results: int = 5, sort_by: str = 'releva
|
|
| 104 |
|
| 105 |
functions_dict = {f["function"]["name"]: f for f in functions_list}
|
| 106 |
FUNCTION_BACKENDS = {
|
|
|
|
| 107 |
PAPER_SEARCH_FUNCTION_NAME: search_arxiv_papers,
|
| 108 |
}
|
| 109 |
|
|
@@ -116,6 +149,8 @@ class LLM:
|
|
| 116 |
self.api_key = OAI_API_KEY
|
| 117 |
self.max_model_len = max_model_len
|
| 118 |
self.client = OpenAI(base_url=ENDPOINT_URL, api_key=self.api_key)
|
|
|
|
|
|
|
| 119 |
self.model_name = "meta-llama/Llama-3.3-70B-Instruct"
|
| 120 |
|
| 121 |
def generate(self, prompt: str, sampling_params: dict) -> dict:
|
|
@@ -128,15 +163,18 @@ class LLM:
|
|
| 128 |
"n": sampling_params.get("n", 1),
|
| 129 |
"stream": False,
|
| 130 |
}
|
|
|
|
| 131 |
if "stop" in sampling_params:
|
| 132 |
completion_params["stop"] = sampling_params["stop"]
|
| 133 |
if "presence_penalty" in sampling_params:
|
| 134 |
completion_params["presence_penalty"] = sampling_params["presence_penalty"]
|
| 135 |
if "frequency_penalty" in sampling_params:
|
| 136 |
completion_params["frequency_penalty"] = sampling_params["frequency_penalty"]
|
|
|
|
| 137 |
return self.client.completions.create(**completion_params)
|
| 138 |
|
| 139 |
def form_chat_prompt(message_history, functions=functions_dict.keys()):
|
|
|
|
| 140 |
functions_string = "\n\n".join([json.dumps(functions_dict[f], indent=4) for f in functions])
|
| 141 |
full_prompt = (
|
| 142 |
ROLE_HEADER.format(role="system")
|
|
@@ -155,6 +193,7 @@ def form_chat_prompt(message_history, functions=functions_dict.keys()):
|
|
| 155 |
return full_prompt
|
| 156 |
|
| 157 |
def check_assistant_response_for_tool_calls(response):
|
|
|
|
| 158 |
response = response.split(FUNCTION_EOT_STRING)[0].split(EOT_STRING)[0]
|
| 159 |
for tool_name in functions_dict.keys():
|
| 160 |
if f"\"{tool_name}\"" in response and "{" in response:
|
|
@@ -168,17 +207,21 @@ def check_assistant_response_for_tool_calls(response):
|
|
| 168 |
return None
|
| 169 |
|
| 170 |
def process_tool_request(tool_request_data):
|
|
|
|
| 171 |
tool_name = tool_request_data["name"]
|
| 172 |
tool_parameters = tool_request_data["parameters"]
|
|
|
|
| 173 |
if tool_name == PAPER_SEARCH_FUNCTION_NAME:
|
| 174 |
query = tool_parameters["query"]
|
| 175 |
max_results = tool_parameters.get("max_results", 5)
|
| 176 |
sort_by = tool_parameters.get("sort_by", "relevance")
|
| 177 |
search_results = FUNCTION_BACKENDS[tool_name](query, max_results, sort_by)
|
| 178 |
return {"name": PAPER_SEARCH_FUNCTION_NAME, "results": search_results}
|
|
|
|
| 179 |
return None
|
| 180 |
|
| 181 |
def restore_message_history(full_history):
|
|
|
|
| 182 |
restored = []
|
| 183 |
for message in full_history:
|
| 184 |
if message["role"] == "assistant" and "metadata" in message:
|
|
@@ -196,10 +239,13 @@ def restore_message_history(full_history):
|
|
| 196 |
return restored
|
| 197 |
|
| 198 |
def iterate_chat(llm, sampling_params, full_history):
|
|
|
|
| 199 |
tool_interactions = []
|
|
|
|
| 200 |
for _ in range(10):
|
| 201 |
prompt = form_chat_prompt(restore_message_history(full_history) + tool_interactions)
|
| 202 |
output = llm.generate(prompt, sampling_params)
|
|
|
|
| 203 |
if VERBOSE_SHELL:
|
| 204 |
print(f"Input prompt: {prompt}")
|
| 205 |
print("-" * 50)
|
|
@@ -207,8 +253,10 @@ def iterate_chat(llm, sampling_params, full_history):
|
|
| 207 |
print("=" * 50)
|
| 208 |
if not output or not output.choices:
|
| 209 |
raise ValueError("Invalid completion response")
|
|
|
|
| 210 |
assistant_response = output.choices[0].text.strip()
|
| 211 |
assistant_response = assistant_response.split(FUNCTION_EOT_STRING)[0].split(EOT_STRING)[0]
|
|
|
|
| 212 |
tool_request_data = check_assistant_response_for_tool_calls(assistant_response)
|
| 213 |
if not tool_request_data:
|
| 214 |
final_message = {
|
|
@@ -227,41 +275,58 @@ def iterate_chat(llm, sampling_params, full_history):
|
|
| 227 |
}
|
| 228 |
tool_interactions.append(assistant_message)
|
| 229 |
tool_return_data = process_tool_request(tool_request_data)
|
|
|
|
| 230 |
tool_message = {
|
| 231 |
"role": "function",
|
| 232 |
"content": json.dumps(tool_return_data)
|
| 233 |
}
|
| 234 |
tool_interactions.append(tool_message)
|
|
|
|
| 235 |
return full_history
|
| 236 |
|
| 237 |
-
def
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
"temperature": temperature,
|
| 244 |
-
"top_p": top_p,
|
| 245 |
-
"max_tokens": max_tokens,
|
| 246 |
-
"stop_token_ids": [128001, 128008, 128009, 128006],
|
| 247 |
-
}
|
| 248 |
updated_history = iterate_chat(llm, sampling_params, full_history)
|
| 249 |
assistant_answer = updated_history[-1]["content"]
|
| 250 |
-
chat_history.append((
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
# Initialize LLM
|
| 254 |
llm = LLM(max_model_len=8096)
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
)
|
| 265 |
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
demo.launch()
|
|
|
|
| 9 |
from typing import Dict, List, Optional
|
| 10 |
|
| 11 |
ENDPOINT_URL = "https://api.hyperbolic.xyz/v1"
|
| 12 |
+
|
| 13 |
OAI_API_KEY = os.getenv('HYPERBOLIC_XYZ_KEY')
|
| 14 |
+
|
| 15 |
VERBOSE_SHELL = True
|
| 16 |
+
|
| 17 |
todays_date_string = datetime.date.today().strftime("%d %B %Y")
|
| 18 |
|
| 19 |
+
|
| 20 |
NAME_OF_SERVICE = "arXiv Paper Search"
|
| 21 |
+
DESCRIPTION_OF_SERVICE = (
|
| 22 |
+
"a service that searches and retrieves academic papers from arXiv based on various criteria"
|
| 23 |
+
)
|
| 24 |
PAPER_SEARCH_FUNCTION_NAME = "search_arxiv_papers"
|
| 25 |
|
| 26 |
functions_list = [
|
|
|
|
| 33 |
"type": "object",
|
| 34 |
"properties": {
|
| 35 |
"query": {
|
| 36 |
+
"type": "string", # function names for AI agents should be chosen carefully to avoid confusion
|
| 37 |
+
"description": "Search query (e.g., 'deep learning', 'quantum computing')" # descriptions help the AI agent's LLM backend understand the function
|
| 38 |
},
|
| 39 |
"max_results": {
|
| 40 |
"type": "integer",
|
|
|
|
| 69 |
|
| 70 |
If the user request does not necessitate a function call, simply respond to the user's query directly."""
|
| 71 |
|
| 72 |
+
def search_arxiv_papers(
|
| 73 |
+
query: str,
|
| 74 |
+
max_results: int = 5,
|
| 75 |
+
sort_by: str = 'relevance'
|
| 76 |
+
) -> Dict:
|
| 77 |
+
"""
|
| 78 |
+
Search for papers on arXiv using their API.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
query: Search query string
|
| 82 |
+
max_results: Maximum number of results to return (default: 5)
|
| 83 |
+
sort_by: Sorting criteria (default: 'relevance')
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
Dictionary containing search results and metadata
|
| 87 |
+
"""
|
| 88 |
try:
|
| 89 |
+
# Construct the search query
|
| 90 |
search_query = f'all:{query}'
|
| 91 |
+
|
| 92 |
+
# Construct the API URL
|
| 93 |
base_url = 'http://export.arxiv.org/api/query?'
|
| 94 |
params = {
|
| 95 |
'search_query': search_query,
|
|
|
|
| 100 |
}
|
| 101 |
query_string = '&'.join([f'{k}={urllib.parse.quote(str(v))}' for k, v in params.items()])
|
| 102 |
url = base_url + query_string
|
| 103 |
+
|
| 104 |
+
# Make the API request
|
| 105 |
response = urllib.request.urlopen(url)
|
| 106 |
feed = feedparser.parse(response.read().decode('utf-8'))
|
| 107 |
+
|
| 108 |
+
# Process the results
|
| 109 |
papers = []
|
| 110 |
for entry in feed.entries:
|
| 111 |
paper = {
|
|
|
|
| 118 |
'primary_category': entry.tags[0]['term']
|
| 119 |
}
|
| 120 |
papers.append(paper)
|
| 121 |
+
|
| 122 |
+
# Add a delay to respect API rate limits
|
| 123 |
time.sleep(3)
|
| 124 |
+
|
| 125 |
return {
|
| 126 |
'status': 'success',
|
| 127 |
'total_results': len(papers),
|
| 128 |
'papers': papers
|
| 129 |
}
|
| 130 |
+
|
| 131 |
except Exception as e:
|
| 132 |
return {
|
| 133 |
'status': 'error',
|
|
|
|
| 136 |
|
| 137 |
functions_dict = {f["function"]["name"]: f for f in functions_list}
|
| 138 |
FUNCTION_BACKENDS = {
|
| 139 |
+
#WALLET_CHECK_FUNCTION_NAME: check_wallet_balance,
|
| 140 |
PAPER_SEARCH_FUNCTION_NAME: search_arxiv_papers,
|
| 141 |
}
|
| 142 |
|
|
|
|
| 149 |
self.api_key = OAI_API_KEY
|
| 150 |
self.max_model_len = max_model_len
|
| 151 |
self.client = OpenAI(base_url=ENDPOINT_URL, api_key=self.api_key)
|
| 152 |
+
#models_list = self.client.models.list()
|
| 153 |
+
#self.model_name = models_list.data[0].id
|
| 154 |
self.model_name = "meta-llama/Llama-3.3-70B-Instruct"
|
| 155 |
|
| 156 |
def generate(self, prompt: str, sampling_params: dict) -> dict:
|
|
|
|
| 163 |
"n": sampling_params.get("n", 1),
|
| 164 |
"stream": False,
|
| 165 |
}
|
| 166 |
+
|
| 167 |
if "stop" in sampling_params:
|
| 168 |
completion_params["stop"] = sampling_params["stop"]
|
| 169 |
if "presence_penalty" in sampling_params:
|
| 170 |
completion_params["presence_penalty"] = sampling_params["presence_penalty"]
|
| 171 |
if "frequency_penalty" in sampling_params:
|
| 172 |
completion_params["frequency_penalty"] = sampling_params["frequency_penalty"]
|
| 173 |
+
|
| 174 |
return self.client.completions.create(**completion_params)
|
| 175 |
|
| 176 |
def form_chat_prompt(message_history, functions=functions_dict.keys()):
|
| 177 |
+
"""Builds the chat prompt for the LLM."""
|
| 178 |
functions_string = "\n\n".join([json.dumps(functions_dict[f], indent=4) for f in functions])
|
| 179 |
full_prompt = (
|
| 180 |
ROLE_HEADER.format(role="system")
|
|
|
|
| 193 |
return full_prompt
|
| 194 |
|
| 195 |
def check_assistant_response_for_tool_calls(response):
|
| 196 |
+
"""Check if the LLM response contains a function call."""
|
| 197 |
response = response.split(FUNCTION_EOT_STRING)[0].split(EOT_STRING)[0]
|
| 198 |
for tool_name in functions_dict.keys():
|
| 199 |
if f"\"{tool_name}\"" in response and "{" in response:
|
|
|
|
| 207 |
return None
|
| 208 |
|
| 209 |
def process_tool_request(tool_request_data):
|
| 210 |
+
"""Process tool requests from the LLM."""
|
| 211 |
tool_name = tool_request_data["name"]
|
| 212 |
tool_parameters = tool_request_data["parameters"]
|
| 213 |
+
|
| 214 |
if tool_name == PAPER_SEARCH_FUNCTION_NAME:
|
| 215 |
query = tool_parameters["query"]
|
| 216 |
max_results = tool_parameters.get("max_results", 5)
|
| 217 |
sort_by = tool_parameters.get("sort_by", "relevance")
|
| 218 |
search_results = FUNCTION_BACKENDS[tool_name](query, max_results, sort_by)
|
| 219 |
return {"name": PAPER_SEARCH_FUNCTION_NAME, "results": search_results}
|
| 220 |
+
|
| 221 |
return None
|
| 222 |
|
| 223 |
def restore_message_history(full_history):
|
| 224 |
+
"""Restore the complete message history including tool interactions."""
|
| 225 |
restored = []
|
| 226 |
for message in full_history:
|
| 227 |
if message["role"] == "assistant" and "metadata" in message:
|
|
|
|
| 239 |
return restored
|
| 240 |
|
| 241 |
def iterate_chat(llm, sampling_params, full_history):
|
| 242 |
+
"""Handle conversation turns with tool calling."""
|
| 243 |
tool_interactions = []
|
| 244 |
+
|
| 245 |
for _ in range(10):
|
| 246 |
prompt = form_chat_prompt(restore_message_history(full_history) + tool_interactions)
|
| 247 |
output = llm.generate(prompt, sampling_params)
|
| 248 |
+
|
| 249 |
if VERBOSE_SHELL:
|
| 250 |
print(f"Input prompt: {prompt}")
|
| 251 |
print("-" * 50)
|
|
|
|
| 253 |
print("=" * 50)
|
| 254 |
if not output or not output.choices:
|
| 255 |
raise ValueError("Invalid completion response")
|
| 256 |
+
|
| 257 |
assistant_response = output.choices[0].text.strip()
|
| 258 |
assistant_response = assistant_response.split(FUNCTION_EOT_STRING)[0].split(EOT_STRING)[0]
|
| 259 |
+
|
| 260 |
tool_request_data = check_assistant_response_for_tool_calls(assistant_response)
|
| 261 |
if not tool_request_data:
|
| 262 |
final_message = {
|
|
|
|
| 275 |
}
|
| 276 |
tool_interactions.append(assistant_message)
|
| 277 |
tool_return_data = process_tool_request(tool_request_data)
|
| 278 |
+
|
| 279 |
tool_message = {
|
| 280 |
"role": "function",
|
| 281 |
"content": json.dumps(tool_return_data)
|
| 282 |
}
|
| 283 |
tool_interactions.append(tool_message)
|
| 284 |
+
|
| 285 |
return full_history
|
| 286 |
|
| 287 |
+
def user_conversation(user_message, chat_history, full_history):
|
| 288 |
+
"""Handle user input and maintain conversation state."""
|
| 289 |
+
if full_history is None:
|
| 290 |
+
full_history = []
|
| 291 |
+
|
| 292 |
+
full_history.append({"role": "user", "content": user_message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
updated_history = iterate_chat(llm, sampling_params, full_history)
|
| 294 |
assistant_answer = updated_history[-1]["content"]
|
| 295 |
+
chat_history.append((user_message, assistant_answer))
|
| 296 |
+
|
| 297 |
+
return "", chat_history, updated_history
|
| 298 |
+
|
| 299 |
+
sampling_params = {
|
| 300 |
+
"temperature": 0.8,
|
| 301 |
+
"top_p": 0.95,
|
| 302 |
+
"max_tokens": 512,
|
| 303 |
+
"stop_token_ids": [128001,128008,128009,128006],
|
| 304 |
+
}
|
| 305 |
|
| 306 |
# Initialize LLM
|
| 307 |
llm = LLM(max_model_len=8096)
|
| 308 |
|
| 309 |
+
with gr.Blocks() as demo:
|
| 310 |
+
gr.Markdown(f"<h2>{NAME_OF_SERVICE}</h2>")
|
| 311 |
+
chat_state = gr.State([])
|
| 312 |
+
chatbot = gr.Chatbot(label="Chat with the arXiv Paper Search Assistant")
|
| 313 |
+
user_input = gr.Textbox(
|
| 314 |
+
lines=1,
|
| 315 |
+
placeholder="Type your message here...",
|
| 316 |
+
)
|
|
|
|
| 317 |
|
| 318 |
+
user_input.submit(
|
| 319 |
+
fn=user_conversation,
|
| 320 |
+
inputs=[user_input, chatbot, chat_state],
|
| 321 |
+
outputs=[user_input, chatbot, chat_state],
|
| 322 |
+
queue=False
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
send_button = gr.Button("Send")
|
| 326 |
+
send_button.click(
|
| 327 |
+
fn=user_conversation,
|
| 328 |
+
inputs=[user_input, chatbot, chat_state],
|
| 329 |
+
outputs=[user_input, chatbot, chat_state],
|
| 330 |
+
queue=False
|
| 331 |
+
)
|
| 332 |
demo.launch()
|