Spaces:
Sleeping
Sleeping
tyrwh
commited on
Commit
·
228a7ef
1
Parent(s):
37dd438
Big overhaul to app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,27 @@
|
|
| 1 |
-
from flask import Flask, render_template, request, jsonify, send_from_directory, send_file, Response
|
| 2 |
-
from multiprocessing import Pool, cpu_count
|
| 3 |
-
from threading import Thread
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from PIL import Image
|
| 6 |
-
from datetime import datetime
|
| 7 |
import os
|
| 8 |
-
import tempfile
|
| 9 |
import uuid
|
| 10 |
-
import pandas as pd
|
| 11 |
-
from werkzeug.utils import secure_filename
|
| 12 |
import traceback
|
| 13 |
import sys
|
| 14 |
import io
|
| 15 |
import zipfile
|
| 16 |
import cv2
|
| 17 |
import csv
|
| 18 |
-
import
|
| 19 |
-
import redis
|
| 20 |
import json
|
| 21 |
import shutil
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
from yolo_utils import load_model, detect_image
|
| 24 |
|
| 25 |
app = Flask(__name__)
|
|
|
|
| 26 |
|
| 27 |
APP_ROOT = Path(__file__).parent
|
| 28 |
UPLOAD_FOLDER = APP_ROOT / 'uploads'
|
|
@@ -35,9 +34,6 @@ app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg', 'tif', 'tiff'}
|
|
| 35 |
UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True)
|
| 36 |
RESULT_FOLDER.mkdir(parents=True, exist_ok=True)
|
| 37 |
|
| 38 |
-
# Redis client (localhost:6379, db=0, no password)
|
| 39 |
-
redis_client = redis.Redis(host='localhost', port=6379, db=0, decode_responses=True)
|
| 40 |
-
|
| 41 |
@app.errorhandler(Exception)
|
| 42 |
def handle_exception(e):
|
| 43 |
print(f"Unhandled exception: {str(e)}")
|
|
@@ -51,73 +47,90 @@ def allowed_file(filename):
|
|
| 51 |
def index():
|
| 52 |
return render_template('index.html')
|
| 53 |
|
| 54 |
-
#
|
|
|
|
| 55 |
_model = None
|
| 56 |
def get_model():
|
| 57 |
global _model
|
| 58 |
if _model is None:
|
| 59 |
_model = load_model(WEIGHTS_FILE)
|
|
|
|
|
|
|
| 60 |
return _model
|
| 61 |
|
| 62 |
-
def
|
| 63 |
-
# Remove files
|
| 64 |
-
upload_dir =
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
shutil.rmtree(upload_dir)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
redis_client.set(f"job:{job_id}", json.dumps(state))
|
| 81 |
|
| 82 |
-
all_detections = {}
|
| 83 |
|
| 84 |
def process_image(args):
|
| 85 |
orig_name, unique_name, image_bytes = args
|
| 86 |
model = get_model()
|
| 87 |
detections = detect_image(model, image_bytes, conf=0.05)
|
| 88 |
-
# Save original image to uploads for later annotation (already saved)
|
| 89 |
return {'orig_name': orig_name, 'unique_name': unique_name, 'detections': detections}
|
| 90 |
|
| 91 |
-
def async_process_images(
|
| 92 |
try:
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
job_state['progress'] = 0
|
| 96 |
-
set_job_state(job_id, job_state)
|
| 97 |
total = len(file_data)
|
| 98 |
results = []
|
| 99 |
detections = {}
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
| 102 |
results.append({
|
| 103 |
'filename': result['orig_name'],
|
| 104 |
'num_eggs': sum(1 for d in result['detections'] if d.get('class') == 'egg'),
|
| 105 |
})
|
| 106 |
detections[result['orig_name']] = result['detections']
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
except Exception as e:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
set_job_state(job_id, job_state)
|
| 121 |
|
| 122 |
@app.route('/process', methods=['POST'])
|
| 123 |
def process_images():
|
|
@@ -125,80 +138,62 @@ def process_images():
|
|
| 125 |
files = request.files.getlist('files')
|
| 126 |
if not files or files[0].filename == '':
|
| 127 |
return jsonify({'error': 'No files uploaded'}), 400
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
#
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
| 134 |
'status': 'starting',
|
| 135 |
'progress': 0,
|
| 136 |
'results': [],
|
| 137 |
'filename_map': filename_map,
|
| 138 |
'detections': {},
|
| 139 |
}
|
| 140 |
-
|
| 141 |
-
thread = Thread(target=async_process_images, args=(
|
| 142 |
thread.daemon = True
|
| 143 |
thread.start()
|
| 144 |
-
return jsonify({'jobId':
|
| 145 |
except Exception as e:
|
| 146 |
print(f"Error in /process: {e}")
|
| 147 |
print(traceback.format_exc())
|
| 148 |
return jsonify({'error': str(e)}), 500
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
file_data = []
|
| 157 |
-
for f in files:
|
| 158 |
-
orig_name = secure_filename(f.filename)
|
| 159 |
-
ext = os.path.splitext(orig_name)[1]
|
| 160 |
-
unique_name = f"{uuid.uuid4().hex}{ext}"
|
| 161 |
-
file_path = os.path.join(upload_dir, unique_name)
|
| 162 |
-
f.save(file_path)
|
| 163 |
-
filename_map[orig_name] = unique_name
|
| 164 |
-
with open(file_path, 'rb') as imgf:
|
| 165 |
-
file_data.append((orig_name, unique_name, imgf.read()))
|
| 166 |
-
return filename_map, file_data
|
| 167 |
-
|
| 168 |
-
@app.route('/progress/<job_id>')
|
| 169 |
-
def get_progress(job_id):
|
| 170 |
-
job_state = get_job_state(job_id)
|
| 171 |
if not job_state:
|
| 172 |
-
return jsonify({"status": "error", "error": "
|
| 173 |
-
# Add a mapping from filename to detections for frontend plotting
|
| 174 |
if 'detections' in job_state:
|
| 175 |
job_state['detections_by_filename'] = job_state['detections']
|
| 176 |
return jsonify(job_state)
|
| 177 |
|
| 178 |
-
@app.route('/results/<
|
| 179 |
-
def download_file(
|
| 180 |
try:
|
| 181 |
-
try:
|
| 182 |
-
uuid.UUID(job_id, version=4)
|
| 183 |
-
except ValueError:
|
| 184 |
-
return jsonify({"error": "Invalid job ID format"}), 400
|
| 185 |
|
|
|
|
|
|
|
| 186 |
if '..' in filename or filename.startswith('/'):
|
| 187 |
return jsonify({"error": "Invalid filename"}), 400
|
| 188 |
-
|
| 189 |
safe_filename = secure_filename(filename)
|
| 190 |
-
file_dir = Path(app.config['RESULT_FOLDER']) /
|
| 191 |
file_path = (file_dir / safe_filename).resolve()
|
| 192 |
-
|
| 193 |
if not str(file_path).startswith(str(file_dir.resolve())):
|
| 194 |
-
print(f"Attempted path traversal: {
|
| 195 |
return jsonify({"error": "Invalid file path"}), 400
|
| 196 |
-
|
| 197 |
if not file_path.is_file():
|
| 198 |
if not file_dir.exists():
|
| 199 |
-
return jsonify({"error": f"
|
| 200 |
files_in_dir = list(file_dir.iterdir())
|
| 201 |
-
return jsonify({"error": f"File '{filename}' not found in
|
| 202 |
|
| 203 |
if filename.lower().endswith(('.tif', '.tiff')):
|
| 204 |
try:
|
|
@@ -240,17 +235,15 @@ def download_file(job_id, filename):
|
|
| 240 |
print(error_message)
|
| 241 |
return jsonify({"error": "Server error", "log": error_message}), 500
|
| 242 |
|
| 243 |
-
@app.route('/export_images/<
|
| 244 |
-
def export_images(
|
| 245 |
try:
|
| 246 |
-
try:
|
| 247 |
-
uuid.UUID(job_id, version=4)
|
| 248 |
-
except ValueError:
|
| 249 |
-
return jsonify({"error": "Invalid job ID format"}), 400
|
| 250 |
|
| 251 |
-
|
|
|
|
|
|
|
| 252 |
if not job_dir.exists():
|
| 253 |
-
return jsonify({"error": f"
|
| 254 |
|
| 255 |
annotated_files = list(job_dir.glob('*_annotated.*'))
|
| 256 |
if not annotated_files:
|
|
@@ -280,9 +273,9 @@ def export_images(job_id):
|
|
| 280 |
def export_csv():
|
| 281 |
try:
|
| 282 |
data = request.json
|
| 283 |
-
|
| 284 |
threshold = float(data.get('confidence', 0.5))
|
| 285 |
-
job_state =
|
| 286 |
if not job_state:
|
| 287 |
return jsonify({'error': 'Job not found'}), 404
|
| 288 |
rows = []
|
|
@@ -311,17 +304,17 @@ def export_csv():
|
|
| 311 |
def export_images_post():
|
| 312 |
try:
|
| 313 |
data = request.json
|
| 314 |
-
|
| 315 |
threshold = float(data.get('confidence', 0.5))
|
| 316 |
-
job_state =
|
| 317 |
if not job_state:
|
| 318 |
return jsonify({'error': 'Job not found'}), 404
|
| 319 |
memory_file = io.BytesIO()
|
| 320 |
with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf:
|
| 321 |
for orig_name, detections in job_state['detections'].items():
|
| 322 |
unique_name = job_state['filename_map'][orig_name]
|
| 323 |
-
img_path =
|
| 324 |
-
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
| 325 |
filtered = [d for d in detections if d['score'] >= threshold]
|
| 326 |
for det in filtered:
|
| 327 |
x1, y1, x2, y2 = map(int, det['bbox'])
|
|
@@ -356,7 +349,7 @@ def print_startup_info():
|
|
| 356 |
except Exception as e:
|
| 357 |
print(f"Could not get weights file size: {e}")
|
| 358 |
|
| 359 |
-
is_container =
|
| 360 |
print(f"Running in container: {is_container}")
|
| 361 |
|
| 362 |
if is_container:
|
|
@@ -386,6 +379,17 @@ def print_startup_info():
|
|
| 386 |
except Exception as e:
|
| 387 |
print(f"Could not get NemaQuant script details: {e}")
|
| 388 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
if __name__ == '__main__':
|
| 390 |
print_startup_info()
|
| 391 |
app.run(host='0.0.0.0', port=7860, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import uuid
|
|
|
|
|
|
|
| 3 |
import traceback
|
| 4 |
import sys
|
| 5 |
import io
|
| 6 |
import zipfile
|
| 7 |
import cv2
|
| 8 |
import csv
|
| 9 |
+
import torch
|
|
|
|
| 10 |
import json
|
| 11 |
import shutil
|
| 12 |
+
import numpy as np
|
| 13 |
+
import pandas as pd
|
| 14 |
+
from flask import Flask, Response, render_template, request, jsonify, send_from_directory, send_file, session, redirect, url_for
|
| 15 |
+
from multiprocessing.pool import ThreadPool
|
| 16 |
+
from threading import Thread
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from datetime import datetime
|
| 20 |
+
from werkzeug.utils import secure_filename
|
| 21 |
from yolo_utils import load_model, detect_image
|
| 22 |
|
| 23 |
app = Flask(__name__)
|
| 24 |
+
app.secret_key = os.environ.get('FLASK_SECRET_KEY', str(uuid.uuid4())) # For session security
|
| 25 |
|
| 26 |
APP_ROOT = Path(__file__).parent
|
| 27 |
UPLOAD_FOLDER = APP_ROOT / 'uploads'
|
|
|
|
| 34 |
UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True)
|
| 35 |
RESULT_FOLDER.mkdir(parents=True, exist_ok=True)
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
@app.errorhandler(Exception)
|
| 38 |
def handle_exception(e):
|
| 39 |
print(f"Unhandled exception: {str(e)}")
|
|
|
|
| 47 |
def index():
|
| 48 |
return render_template('index.html')
|
| 49 |
|
| 50 |
+
# Load model once at startup, use CUDA if available
|
| 51 |
+
MODEL_DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 52 |
_model = None
|
| 53 |
def get_model():
|
| 54 |
global _model
|
| 55 |
if _model is None:
|
| 56 |
_model = load_model(WEIGHTS_FILE)
|
| 57 |
+
if MODEL_DEVICE == 'cuda':
|
| 58 |
+
_model.to('cuda')
|
| 59 |
return _model
|
| 60 |
|
| 61 |
+
def cleanup_session(session_id):
|
| 62 |
+
# Remove files for this session
|
| 63 |
+
upload_dir = Path(app.config['UPLOAD_FOLDER']) / session_id
|
| 64 |
+
result_dir = Path(app.config['RESULT_FOLDER']) / session_id
|
| 65 |
+
for d in [upload_dir, result_dir]:
|
| 66 |
+
if d.exists():
|
| 67 |
+
shutil.rmtree(d)
|
| 68 |
+
|
| 69 |
+
# save the uploaded files
|
| 70 |
+
@app.route('/uploads/<session_id>', methods=['POST'])
|
| 71 |
+
def upload_files(session_id):
|
| 72 |
+
files = request.files.getlist('files')
|
| 73 |
+
upload_dir = Path(app.config['UPLOAD_FOLDER']) / session_id
|
| 74 |
+
# clear out any existing files for the session
|
| 75 |
+
if upload_dir.exists():
|
| 76 |
shutil.rmtree(upload_dir)
|
| 77 |
+
upload_dir.mkdir(parents=True, exist_ok=True)
|
| 78 |
+
filename_map = {}
|
| 79 |
+
file_data = []
|
| 80 |
+
for f in files:
|
| 81 |
+
orig_name = secure_filename(f.filename)
|
| 82 |
+
ext = Path(orig_name).suffix
|
| 83 |
+
unique_name = f"{uuid.uuid4().hex}{ext}"
|
| 84 |
+
file_path = upload_dir / unique_name
|
| 85 |
+
f.save(str(file_path))
|
| 86 |
+
filename_map[orig_name] = unique_name
|
| 87 |
+
with open(file_path, 'rb') as imgf:
|
| 88 |
+
file_data.append((orig_name, unique_name, imgf.read()))
|
| 89 |
+
return filename_map, file_data
|
|
|
|
| 90 |
|
|
|
|
| 91 |
|
| 92 |
def process_image(args):
|
| 93 |
orig_name, unique_name, image_bytes = args
|
| 94 |
model = get_model()
|
| 95 |
detections = detect_image(model, image_bytes, conf=0.05)
|
|
|
|
| 96 |
return {'orig_name': orig_name, 'unique_name': unique_name, 'detections': detections}
|
| 97 |
|
| 98 |
+
def async_process_images(session_id, file_data, state):
|
| 99 |
try:
|
| 100 |
+
state['status'] = 'running'
|
| 101 |
+
state['progress'] = 0
|
|
|
|
|
|
|
| 102 |
total = len(file_data)
|
| 103 |
results = []
|
| 104 |
detections = {}
|
| 105 |
+
# Use ThreadPool for CPU, else single-threaded for CUDA
|
| 106 |
+
if MODEL_DEVICE == 'cuda':
|
| 107 |
+
pool = None
|
| 108 |
+
for idx, args in enumerate(file_data):
|
| 109 |
+
result = process_image(args)
|
| 110 |
results.append({
|
| 111 |
'filename': result['orig_name'],
|
| 112 |
'num_eggs': sum(1 for d in result['detections'] if d.get('class') == 'egg'),
|
| 113 |
})
|
| 114 |
detections[result['orig_name']] = result['detections']
|
| 115 |
+
state['progress'] = int((idx + 1) / total * 100)
|
| 116 |
+
else:
|
| 117 |
+
with ThreadPool() as pool:
|
| 118 |
+
for idx, result in enumerate(pool.imap(process_image, file_data)):
|
| 119 |
+
results.append({
|
| 120 |
+
'filename': result['orig_name'],
|
| 121 |
+
'num_eggs': sum(1 for d in result['detections'] if d.get('class') == 'egg'),
|
| 122 |
+
})
|
| 123 |
+
detections[result['orig_name']] = result['detections']
|
| 124 |
+
state['progress'] = int((idx + 1) / total * 100)
|
| 125 |
+
state['status'] = 'success'
|
| 126 |
+
state['results'] = results
|
| 127 |
+
state['detections'] = detections
|
| 128 |
+
state['progress'] = 100
|
| 129 |
except Exception as e:
|
| 130 |
+
state['status'] = 'error'
|
| 131 |
+
state['error'] = str(e)
|
| 132 |
+
state['progress'] = 100
|
| 133 |
+
|
|
|
|
| 134 |
|
| 135 |
@app.route('/process', methods=['POST'])
|
| 136 |
def process_images():
|
|
|
|
| 138 |
files = request.files.getlist('files')
|
| 139 |
if not files or files[0].filename == '':
|
| 140 |
return jsonify({'error': 'No files uploaded'}), 400
|
| 141 |
+
# Assign a session ID if not present
|
| 142 |
+
if 'id' not in session:
|
| 143 |
+
session['id'] = str(uuid.uuid4())
|
| 144 |
+
session_id = session['id']
|
| 145 |
+
# Clean up any previous state for this session
|
| 146 |
+
cleanup_session(session_id)
|
| 147 |
+
filename_map, file_data = upload_files(files, session_id)
|
| 148 |
+
# Store job state in session
|
| 149 |
+
state = {
|
| 150 |
'status': 'starting',
|
| 151 |
'progress': 0,
|
| 152 |
'results': [],
|
| 153 |
'filename_map': filename_map,
|
| 154 |
'detections': {},
|
| 155 |
}
|
| 156 |
+
session['job_state'] = state
|
| 157 |
+
thread = Thread(target=async_process_images, args=(session_id, file_data, state))
|
| 158 |
thread.daemon = True
|
| 159 |
thread.start()
|
| 160 |
+
return jsonify({'jobId': session_id})
|
| 161 |
except Exception as e:
|
| 162 |
print(f"Error in /process: {e}")
|
| 163 |
print(traceback.format_exc())
|
| 164 |
return jsonify({'error': str(e)}), 500
|
| 165 |
|
| 166 |
+
@app.route('/progress/<session_id>')
|
| 167 |
+
def get_progress(session_id):
|
| 168 |
+
# Only allow access to own session
|
| 169 |
+
if 'id' not in session or session['id'] != session_id:
|
| 170 |
+
return jsonify({"status": "error", "error": "Session not found or expired"}), 404
|
| 171 |
+
job_state = session.get('job_state')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
if not job_state:
|
| 173 |
+
return jsonify({"status": "error", "error": "No job state"}), 404
|
|
|
|
| 174 |
if 'detections' in job_state:
|
| 175 |
job_state['detections_by_filename'] = job_state['detections']
|
| 176 |
return jsonify(job_state)
|
| 177 |
|
| 178 |
+
@app.route('/results/<session_id>/<path:filename>')
|
| 179 |
+
def download_file(session_id, filename):
|
| 180 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
if 'id' not in session or session['id'] != session_id:
|
| 183 |
+
return jsonify({"error": "Session not found or expired"}), 404
|
| 184 |
if '..' in filename or filename.startswith('/'):
|
| 185 |
return jsonify({"error": "Invalid filename"}), 400
|
|
|
|
| 186 |
safe_filename = secure_filename(filename)
|
| 187 |
+
file_dir = Path(app.config['RESULT_FOLDER']) / session_id
|
| 188 |
file_path = (file_dir / safe_filename).resolve()
|
|
|
|
| 189 |
if not str(file_path).startswith(str(file_dir.resolve())):
|
| 190 |
+
print(f"Attempted path traversal: {session_id}/{filename}")
|
| 191 |
return jsonify({"error": "Invalid file path"}), 400
|
|
|
|
| 192 |
if not file_path.is_file():
|
| 193 |
if not file_dir.exists():
|
| 194 |
+
return jsonify({"error": f"Session directory {session_id} not found"}), 404
|
| 195 |
files_in_dir = list(file_dir.iterdir())
|
| 196 |
+
return jsonify({"error": f"File '{filename}' not found in session '{session_id}'. Available: {[f.name for f in files_in_dir]}"}), 404
|
| 197 |
|
| 198 |
if filename.lower().endswith(('.tif', '.tiff')):
|
| 199 |
try:
|
|
|
|
| 235 |
print(error_message)
|
| 236 |
return jsonify({"error": "Server error", "log": error_message}), 500
|
| 237 |
|
| 238 |
+
@app.route('/export_images/<session_id>')
|
| 239 |
+
def export_images(session_id):
|
| 240 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
+
if 'id' not in session or session['id'] != session_id:
|
| 243 |
+
return jsonify({"error": "Session not found or expired"}), 404
|
| 244 |
+
job_dir = Path(app.config['RESULT_FOLDER']) / session_id
|
| 245 |
if not job_dir.exists():
|
| 246 |
+
return jsonify({"error": f"Session directory {session_id} not found"}), 404
|
| 247 |
|
| 248 |
annotated_files = list(job_dir.glob('*_annotated.*'))
|
| 249 |
if not annotated_files:
|
|
|
|
| 273 |
def export_csv():
|
| 274 |
try:
|
| 275 |
data = request.json
|
| 276 |
+
session_id = session.get('id')
|
| 277 |
threshold = float(data.get('confidence', 0.5))
|
| 278 |
+
job_state = session.get('job_state')
|
| 279 |
if not job_state:
|
| 280 |
return jsonify({'error': 'Job not found'}), 404
|
| 281 |
rows = []
|
|
|
|
| 304 |
def export_images_post():
|
| 305 |
try:
|
| 306 |
data = request.json
|
| 307 |
+
session_id = session.get('id')
|
| 308 |
threshold = float(data.get('confidence', 0.5))
|
| 309 |
+
job_state = session.get('job_state')
|
| 310 |
if not job_state:
|
| 311 |
return jsonify({'error': 'Job not found'}), 404
|
| 312 |
memory_file = io.BytesIO()
|
| 313 |
with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf:
|
| 314 |
for orig_name, detections in job_state['detections'].items():
|
| 315 |
unique_name = job_state['filename_map'][orig_name]
|
| 316 |
+
img_path = Path(app.config['UPLOAD_FOLDER']) / session_id / unique_name
|
| 317 |
+
img = cv2.imread(str(img_path), cv2.IMREAD_UNCHANGED)
|
| 318 |
filtered = [d for d in detections if d['score'] >= threshold]
|
| 319 |
for det in filtered:
|
| 320 |
x1, y1, x2, y2 = map(int, det['bbox'])
|
|
|
|
| 349 |
except Exception as e:
|
| 350 |
print(f"Could not get weights file size: {e}")
|
| 351 |
|
| 352 |
+
is_container = Path('/.dockerenv').exists() or 'DOCKER_HOST' in os.environ
|
| 353 |
print(f"Running in container: {is_container}")
|
| 354 |
|
| 355 |
if is_container:
|
|
|
|
| 379 |
except Exception as e:
|
| 380 |
print(f"Could not get NemaQuant script details: {e}")
|
| 381 |
|
| 382 |
+
@app.before_request
|
| 383 |
+
def ensure_session_id():
|
| 384 |
+
if 'id' not in session:
|
| 385 |
+
session['id'] = str(uuid.uuid4())
|
| 386 |
+
|
| 387 |
+
@app.teardown_appcontext
|
| 388 |
+
def cleanup_on_teardown(exception):
|
| 389 |
+
# If session is gone, clean up files
|
| 390 |
+
if 'id' in session and not session.modified:
|
| 391 |
+
cleanup_session(session['id'])
|
| 392 |
+
|
| 393 |
if __name__ == '__main__':
|
| 394 |
print_startup_info()
|
| 395 |
app.run(host='0.0.0.0', port=7860, debug=True)
|