Spaces:
Sleeping
Sleeping
tyrwh
commited on
Commit
·
471a225
1
Parent(s):
e3446e1
Bug fixes on plotting and saving
Browse files- app.py +36 -14
- static/script.js +55 -47
- templates/index.html +4 -1
app.py
CHANGED
|
@@ -18,6 +18,7 @@ import zipfile
|
|
| 18 |
import cv2
|
| 19 |
import numpy as np
|
| 20 |
import csv
|
|
|
|
| 21 |
|
| 22 |
from yolo_utils import load_model, detect_image
|
| 23 |
|
|
@@ -70,6 +71,28 @@ def process_image(args):
|
|
| 70 |
f.write(image_bytes)
|
| 71 |
return {'filename': filename, 'detections': detections}
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
@app.route('/process', methods=['POST'])
|
| 74 |
def process_images():
|
| 75 |
try:
|
|
@@ -77,19 +100,13 @@ def process_images():
|
|
| 77 |
if not files or files[0].filename == '':
|
| 78 |
return jsonify({'error': 'No files uploaded'}), 400
|
| 79 |
|
| 80 |
-
# Read all files into memory as (filename, bytes)
|
| 81 |
file_data = [(secure_filename(f.filename), f.read()) for f in files]
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
for result in results:
|
| 89 |
-
all_detections[result['filename']] = result['detections']
|
| 90 |
-
|
| 91 |
-
# Return all detections for all images
|
| 92 |
-
return jsonify({'results': results})
|
| 93 |
except Exception as e:
|
| 94 |
print(f"Error in /process: {e}")
|
| 95 |
print(traceback.format_exc())
|
|
@@ -107,7 +124,6 @@ def annotate_image():
|
|
| 107 |
# Draw boxes
|
| 108 |
for det in filtered:
|
| 109 |
x1, y1, x2, y2 = map(int, det['bbox'])
|
| 110 |
-
print(f"[annotate_image] Drawing box: ({x1}, {y1}), ({x2}, {y2})")
|
| 111 |
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 3)
|
| 112 |
temp_path = os.path.join(tempfile.gettempdir(), 'annotated.png')
|
| 113 |
cv2.imwrite(temp_path, img)
|
|
@@ -116,7 +132,13 @@ def annotate_image():
|
|
| 116 |
@app.route('/progress/<job_id>')
|
| 117 |
def get_progress(job_id):
|
| 118 |
status = job_status.get(job_id)
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
@app.route('/results/<job_id>/<path:filename>')
|
| 122 |
def download_file(job_id, filename):
|
|
|
|
| 18 |
import cv2
|
| 19 |
import numpy as np
|
| 20 |
import csv
|
| 21 |
+
from threading import Thread
|
| 22 |
|
| 23 |
from yolo_utils import load_model, detect_image
|
| 24 |
|
|
|
|
| 71 |
f.write(image_bytes)
|
| 72 |
return {'filename': filename, 'detections': detections}
|
| 73 |
|
| 74 |
+
def async_process_images(job_id, file_data):
|
| 75 |
+
try:
|
| 76 |
+
job_status[job_id] = {'status': 'running', 'progress': 0, 'results': []}
|
| 77 |
+
total = len(file_data)
|
| 78 |
+
results = []
|
| 79 |
+
with Pool(processes=min(cpu_count(), total)) as pool:
|
| 80 |
+
for idx, result in enumerate(pool.imap(process_image, file_data)):
|
| 81 |
+
results.append(result)
|
| 82 |
+
# Update progress (0-100)
|
| 83 |
+
job_status[job_id]['progress'] = int((idx + 1) / total * 100)
|
| 84 |
+
# Aggregate results
|
| 85 |
+
for result in results:
|
| 86 |
+
all_detections[result['filename']] = result['detections']
|
| 87 |
+
# Add num_eggs to each result for frontend compatibility
|
| 88 |
+
for result in results:
|
| 89 |
+
result['num_eggs'] = sum(1 for d in result['detections'] if d.get('class') == 'egg')
|
| 90 |
+
job_status[job_id]['status'] = 'success'
|
| 91 |
+
job_status[job_id]['results'] = results
|
| 92 |
+
job_status[job_id]['progress'] = 100
|
| 93 |
+
except Exception as e:
|
| 94 |
+
job_status[job_id] = {'status': 'error', 'error': str(e), 'progress': 100}
|
| 95 |
+
|
| 96 |
@app.route('/process', methods=['POST'])
|
| 97 |
def process_images():
|
| 98 |
try:
|
|
|
|
| 100 |
if not files or files[0].filename == '':
|
| 101 |
return jsonify({'error': 'No files uploaded'}), 400
|
| 102 |
|
|
|
|
| 103 |
file_data = [(secure_filename(f.filename), f.read()) for f in files]
|
| 104 |
+
job_id = str(uuid.uuid4())
|
| 105 |
+
job_status[job_id] = {'status': 'starting', 'progress': 0}
|
| 106 |
+
thread = Thread(target=async_process_images, args=(job_id, file_data))
|
| 107 |
+
thread.daemon = True
|
| 108 |
+
thread.start()
|
| 109 |
+
return jsonify({'jobId': job_id})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
except Exception as e:
|
| 111 |
print(f"Error in /process: {e}")
|
| 112 |
print(traceback.format_exc())
|
|
|
|
| 124 |
# Draw boxes
|
| 125 |
for det in filtered:
|
| 126 |
x1, y1, x2, y2 = map(int, det['bbox'])
|
|
|
|
| 127 |
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 3)
|
| 128 |
temp_path = os.path.join(tempfile.gettempdir(), 'annotated.png')
|
| 129 |
cv2.imwrite(temp_path, img)
|
|
|
|
| 132 |
@app.route('/progress/<job_id>')
|
| 133 |
def get_progress(job_id):
|
| 134 |
status = job_status.get(job_id)
|
| 135 |
+
if not status:
|
| 136 |
+
return jsonify({"status": "error", "error": "Job ID not found"}), 404
|
| 137 |
+
# Add a mapping from filename to detections for frontend plotting
|
| 138 |
+
if 'results' in status:
|
| 139 |
+
detections_by_filename = {r['filename']: r['detections'] for r in status['results']}
|
| 140 |
+
status['detections_by_filename'] = detections_by_filename
|
| 141 |
+
return jsonify(status)
|
| 142 |
|
| 143 |
@app.route('/results/<job_id>/<path:filename>')
|
| 144 |
def download_file(job_id, filename):
|
static/script.js
CHANGED
|
@@ -303,16 +303,12 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 303 |
}
|
| 304 |
|
| 305 |
const mode = inputMode.value;
|
| 306 |
-
// Removed single file warning, as backend now handles it
|
| 307 |
-
// if (mode === 'single' && files.length > 1) { ... }
|
| 308 |
-
|
| 309 |
-
// Start processing
|
| 310 |
setLoading(true);
|
| 311 |
logStatus('Starting upload and processing...');
|
| 312 |
updateProgress(0, 'Uploading files...');
|
| 313 |
-
resultsTableBody.innerHTML = '';
|
| 314 |
-
clearPreview();
|
| 315 |
-
currentResults = [];
|
| 316 |
if (progressInterval) {
|
| 317 |
clearInterval(progressInterval);
|
| 318 |
progressInterval = null;
|
|
@@ -337,34 +333,24 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 337 |
errorText += `: ${errorData.error || 'Unknown server error'}`;
|
| 338 |
if (errorData.log) logStatus(`Server Log: ${errorData.log}`);
|
| 339 |
} catch (e) {
|
| 340 |
-
// Response wasn't JSON
|
| 341 |
errorText += ` - ${response.statusText}`;
|
| 342 |
-
|
| 343 |
throw new Error(errorText);
|
| 344 |
}
|
| 345 |
const data = await response.json();
|
| 346 |
if (data.error) {
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
}
|
| 351 |
-
// Store all detections for frontend filtering
|
| 352 |
-
allDetections = data.results;
|
| 353 |
-
allImageData = {};
|
| 354 |
-
for (const file of files) {
|
| 355 |
-
const reader = new FileReader();
|
| 356 |
-
reader.onload = (e) => {
|
| 357 |
-
allImageData[file.name] = e.target.result;
|
| 358 |
-
};
|
| 359 |
-
reader.readAsDataURL(file);
|
| 360 |
}
|
| 361 |
-
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
setLoading(false);
|
| 364 |
-
|
| 365 |
-
logStatus('Processing finished successfully.');
|
| 366 |
-
onProcessingComplete();
|
| 367 |
-
}, 500);
|
| 368 |
} catch (error) {
|
| 369 |
logStatus(`Error: ${error.message}`);
|
| 370 |
updateProgress(0, 'Error occurred');
|
|
@@ -374,13 +360,12 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 374 |
progressInterval = null;
|
| 375 |
}
|
| 376 |
}
|
| 377 |
-
// Removed finally block here, setLoading(false) is handled by pollProgress or catch block
|
| 378 |
});
|
| 379 |
|
| 380 |
// --- Filtering and Table Update ---
|
| 381 |
function updateResultsTable() {
|
| 382 |
const threshold = parseFloat(confidenceSlider.value);
|
| 383 |
-
//
|
| 384 |
const grouped = {};
|
| 385 |
allDetections.forEach(imgResult => {
|
| 386 |
const filtered = imgResult.detections.filter(det => det.score >= threshold);
|
|
@@ -504,7 +489,7 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 504 |
const data = await response.json();
|
| 505 |
|
| 506 |
// Update UI based on status
|
| 507 |
-
updateProgress(data.progress || 0, data.status);
|
| 508 |
|
| 509 |
// Update image counter based on progress percentage
|
| 510 |
if (data.status === 'Running' || data.status === 'Starting') {
|
|
@@ -517,7 +502,8 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 517 |
progressInterval = null;
|
| 518 |
updateProgress(100, 'Processing complete');
|
| 519 |
logStatus("Processing finished successfully.");
|
| 520 |
-
displayResults(data.results || []);
|
|
|
|
| 521 |
setLoading(false);
|
| 522 |
} else if (data.status === 'error') {
|
| 523 |
clearInterval(progressInterval);
|
|
@@ -628,7 +614,18 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 628 |
}
|
| 629 |
|
| 630 |
// Results Display
|
| 631 |
-
function displayResults(results) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
currentResults = results;
|
| 633 |
resultsTableBody.innerHTML = '';
|
| 634 |
currentImageIndex = -1;
|
|
@@ -1191,29 +1188,35 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 1191 |
showlegend: false
|
| 1192 |
};
|
| 1193 |
|
| 1194 |
-
// Vertical line (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1195 |
const layout = {
|
| 1196 |
margin: {t: 20, r: 20, l: 40, b: 40},
|
| 1197 |
-
xaxis: {title: 'Threshold', dtick: 0.1, range: [0, 1]},
|
| 1198 |
-
yaxis: {title: 'Total Eggs Detected', rangemode: 'tozero'},
|
| 1199 |
showlegend: false,
|
| 1200 |
-
height: 320
|
| 1201 |
-
shapes: [
|
| 1202 |
-
{
|
| 1203 |
-
type: 'line',
|
| 1204 |
-
x0: currentConf, x1: currentConf,
|
| 1205 |
-
y0: 0, y1: Math.max(...yVals, 1),
|
| 1206 |
-
line: {color: 'red', width: 2, dash: 'dot'},
|
| 1207 |
-
layer: 'below' // Draw beneath traces
|
| 1208 |
-
}
|
| 1209 |
-
]
|
| 1210 |
};
|
| 1211 |
|
| 1212 |
-
Plotly.newPlot('confidence-plot', [greyTrace, blueTrace], layout, {
|
| 1213 |
displayModeBar: false,
|
| 1214 |
responsive: true,
|
| 1215 |
staticPlot: true // disables zoom/pan/drag
|
| 1216 |
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1217 |
}
|
| 1218 |
|
| 1219 |
// Call this after processing completes
|
|
@@ -1408,4 +1411,9 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 1408 |
|
| 1409 |
// Hide plot on page load and after clearing files
|
| 1410 |
document.getElementById('confidence-plot').style.display = 'none';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1411 |
});
|
|
|
|
| 303 |
}
|
| 304 |
|
| 305 |
const mode = inputMode.value;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
setLoading(true);
|
| 307 |
logStatus('Starting upload and processing...');
|
| 308 |
updateProgress(0, 'Uploading files...');
|
| 309 |
+
resultsTableBody.innerHTML = '';
|
| 310 |
+
clearPreview();
|
| 311 |
+
currentResults = [];
|
| 312 |
if (progressInterval) {
|
| 313 |
clearInterval(progressInterval);
|
| 314 |
progressInterval = null;
|
|
|
|
| 333 |
errorText += `: ${errorData.error || 'Unknown server error'}`;
|
| 334 |
if (errorData.log) logStatus(`Server Log: ${errorData.log}`);
|
| 335 |
} catch (e) {
|
|
|
|
| 336 |
errorText += ` - ${response.statusText}`;
|
| 337 |
+
}
|
| 338 |
throw new Error(errorText);
|
| 339 |
}
|
| 340 |
const data = await response.json();
|
| 341 |
if (data.error) {
|
| 342 |
+
logStatus(`Error starting process: ${data.error}`);
|
| 343 |
+
if(data.log) logStatus(`Details: ${data.log}`);
|
| 344 |
+
throw new Error(data.error);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
}
|
| 346 |
+
// --- ASYNC JOB: Start polling for progress ---
|
| 347 |
+
if (data.jobId) {
|
| 348 |
+
currentJobId = data.jobId;
|
| 349 |
+
pollProgress(currentJobId);
|
| 350 |
+
} else {
|
| 351 |
+
logStatus('Error: No jobId returned from server.');
|
| 352 |
setLoading(false);
|
| 353 |
+
}
|
|
|
|
|
|
|
|
|
|
| 354 |
} catch (error) {
|
| 355 |
logStatus(`Error: ${error.message}`);
|
| 356 |
updateProgress(0, 'Error occurred');
|
|
|
|
| 360 |
progressInterval = null;
|
| 361 |
}
|
| 362 |
}
|
|
|
|
| 363 |
});
|
| 364 |
|
| 365 |
// --- Filtering and Table Update ---
|
| 366 |
function updateResultsTable() {
|
| 367 |
const threshold = parseFloat(confidenceSlider.value);
|
| 368 |
+
// Use allDetections (now an array of {filename, detections})
|
| 369 |
const grouped = {};
|
| 370 |
allDetections.forEach(imgResult => {
|
| 371 |
const filtered = imgResult.detections.filter(det => det.score >= threshold);
|
|
|
|
| 489 |
const data = await response.json();
|
| 490 |
|
| 491 |
// Update UI based on status
|
| 492 |
+
updateProgress(data.progress || 0, data.status.charAt(0).toUpperCase() + data.status.slice(1));
|
| 493 |
|
| 494 |
// Update image counter based on progress percentage
|
| 495 |
if (data.status === 'Running' || data.status === 'Starting') {
|
|
|
|
| 502 |
progressInterval = null;
|
| 503 |
updateProgress(100, 'Processing complete');
|
| 504 |
logStatus("Processing finished successfully.");
|
| 505 |
+
displayResults(data.results || [], data.detections_by_filename || null);
|
| 506 |
+
renderConfidencePlot();
|
| 507 |
setLoading(false);
|
| 508 |
} else if (data.status === 'error') {
|
| 509 |
clearInterval(progressInterval);
|
|
|
|
| 614 |
}
|
| 615 |
|
| 616 |
// Results Display
|
| 617 |
+
function displayResults(results, detectionsByFilename) {
|
| 618 |
+
// If detectionsByFilename is provided, update allDetections for plot logic
|
| 619 |
+
if (detectionsByFilename) {
|
| 620 |
+
allDetections = Object.keys(detectionsByFilename).map(filename => ({
|
| 621 |
+
filename,
|
| 622 |
+
detections: detectionsByFilename[filename]
|
| 623 |
+
}));
|
| 624 |
+
} else {
|
| 625 |
+
// Fallback: use results array
|
| 626 |
+
allDetections = results.map(r => ({ filename: r.filename, detections: r.detections }));
|
| 627 |
+
}
|
| 628 |
+
// Now update the table
|
| 629 |
currentResults = results;
|
| 630 |
resultsTableBody.innerHTML = '';
|
| 631 |
currentImageIndex = -1;
|
|
|
|
| 1188 |
showlegend: false
|
| 1189 |
};
|
| 1190 |
|
| 1191 |
+
// Vertical line as a trace (above grid, below data)
|
| 1192 |
+
const vlineTrace = {
|
| 1193 |
+
x: [currentConf, currentConf],
|
| 1194 |
+
y: [0, Math.max(...yVals, 1)],
|
| 1195 |
+
mode: 'lines',
|
| 1196 |
+
line: {color: 'red', width: 2, dash: 'dot'},
|
| 1197 |
+
hoverinfo: 'skip',
|
| 1198 |
+
showlegend: false
|
| 1199 |
+
};
|
| 1200 |
+
|
| 1201 |
+
// Remove the vertical line from layout.shapes
|
| 1202 |
const layout = {
|
| 1203 |
margin: {t: 20, r: 20, l: 40, b: 40},
|
| 1204 |
+
xaxis: {title: 'Threshold', dtick: 0.1, range: [0, 1], title_standoff: 18},
|
| 1205 |
+
yaxis: {title: 'Total Eggs Detected', rangemode: 'tozero', title_standoff: 18},
|
| 1206 |
showlegend: false,
|
| 1207 |
+
height: 320
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1208 |
};
|
| 1209 |
|
| 1210 |
+
Plotly.newPlot('confidence-plot', [vlineTrace, greyTrace, blueTrace], layout, {
|
| 1211 |
displayModeBar: false,
|
| 1212 |
responsive: true,
|
| 1213 |
staticPlot: true // disables zoom/pan/drag
|
| 1214 |
});
|
| 1215 |
+
|
| 1216 |
+
// Update total eggs detected text
|
| 1217 |
+
const totalEggs = allDetections.reduce((sum, imgResult) => sum + imgResult.detections.filter(det => det.score >= currentConf).length, 0);
|
| 1218 |
+
const totalEggsElem = document.getElementById('total-eggs-count');
|
| 1219 |
+
if (totalEggsElem) totalEggsElem.textContent = totalEggs;
|
| 1220 |
}
|
| 1221 |
|
| 1222 |
// Call this after processing completes
|
|
|
|
| 1411 |
|
| 1412 |
// Hide plot on page load and after clearing files
|
| 1413 |
document.getElementById('confidence-plot').style.display = 'none';
|
| 1414 |
+
|
| 1415 |
+
// Reset confidence slider to 0.6 and force UI update on page load
|
| 1416 |
+
confidenceSlider.value = 0.6;
|
| 1417 |
+
confidenceSlider.dispatchEvent(new Event('input', { bubbles: true }));
|
| 1418 |
+
confidenceSlider.dispatchEvent(new Event('change', { bubbles: true }));
|
| 1419 |
});
|
templates/index.html
CHANGED
|
@@ -77,7 +77,7 @@
|
|
| 77 |
<div class="form-group">
|
| 78 |
<div class="range-with-value" style="width:100%; display:flex; flex-direction:row; align-items:center; gap:1em;">
|
| 79 |
<input type="range" id="confidence-threshold" name="confidence-threshold"
|
| 80 |
-
min="0.05" max="0.95" step="0.05" value="0.6" list="confidence-ticks" style="width:100%;">
|
| 81 |
<datalist id="confidence-ticks">
|
| 82 |
<option value="0.05" label="0.05"></option>
|
| 83 |
<option value="0.10"></option>
|
|
@@ -102,6 +102,9 @@
|
|
| 102 |
<span id="confidence-value" style="font-size:1.1em; min-width:2.5em; text-align:right;">0.6</span>
|
| 103 |
</div>
|
| 104 |
</div>
|
|
|
|
|
|
|
|
|
|
| 105 |
<div id="confidence-plot" style="margin-top:1.5rem;"></div>
|
| 106 |
</div>
|
| 107 |
|
|
|
|
| 77 |
<div class="form-group">
|
| 78 |
<div class="range-with-value" style="width:100%; display:flex; flex-direction:row; align-items:center; gap:1em;">
|
| 79 |
<input type="range" id="confidence-threshold" name="confidence-threshold"
|
| 80 |
+
min="0.05" max="0.95" step="0.05" value="0.6" list="confidence-ticks" style="width:100%;" autocomplete="off">
|
| 81 |
<datalist id="confidence-ticks">
|
| 82 |
<option value="0.05" label="0.05"></option>
|
| 83 |
<option value="0.10"></option>
|
|
|
|
| 102 |
<span id="confidence-value" style="font-size:1.1em; min-width:2.5em; text-align:right;">0.6</span>
|
| 103 |
</div>
|
| 104 |
</div>
|
| 105 |
+
<div id="total-eggs-detected" style="margin-top:0.5em; font-size:1.1em; color:var(--text-muted);">
|
| 106 |
+
Total Eggs Detected: <span id="total-eggs-count">0</span>
|
| 107 |
+
</div>
|
| 108 |
<div id="confidence-plot" style="margin-top:1.5rem;"></div>
|
| 109 |
</div>
|
| 110 |
|