from PIL import Image def detect_in_image(model, im_path, conf=0.05): img = Image.open(im_path) results = model.predict(img, imgsz=1440, max_det=1000, verbose=False, conf=conf) result = results[0] detections = [] for i, xyxy in enumerate(result.boxes.xyxy): score = float(result.boxes.conf[i]) class_id = int(result.boxes.cls[i]) class_name = result.names[class_id] if class_name == 'egg': detections.append({ 'bbox': [float(x) for x in xyxy.cpu().numpy()], 'score': score, 'class': class_name }) return detections