Spaces:
Sleeping
Sleeping
File size: 35,788 Bytes
845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b e72e041 845939b 10c760b 845939b e72e041 1329295 e72e041 10c760b e72e041 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
"""
Psychrometric module for HVAC Load Calculator.
This module implements psychrometric calculations for air properties,
including functions for mixing air streams and handling different altitudes.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1.
Author: Dr Majed Abuseif
Date: May 2025 (Enhanced based on plan, preserving original features)
Version: 1.3.0
"""
from typing import Dict, List, Any, Optional, Tuple
import math
import numpy as np
import logging
# Set up logging
logger = logging.getLogger(__name__)
# Constants (Preserved from original)
ATMOSPHERIC_PRESSURE = 101325 # Standard atmospheric pressure at sea level in Pa
WATER_MOLECULAR_WEIGHT = 18.01534 # kg/kmol
DRY_AIR_MOLECULAR_WEIGHT = 28.9645 # kg/kmol
UNIVERSAL_GAS_CONSTANT = 8314.462618 # J/(kmol·K)
GAS_CONSTANT_DRY_AIR = UNIVERSAL_GAS_CONSTANT / DRY_AIR_MOLECULAR_WEIGHT # J/(kg·K) = 287.058
GAS_CONSTANT_WATER_VAPOR = UNIVERSAL_GAS_CONSTANT / WATER_MOLECULAR_WEIGHT # J/(kg·K) = 461.52
# Constants for altitude calculation (Standard Atmosphere Model)
SEA_LEVEL_TEMP_K = 288.15 # K (15 °C)
LAPSE_RATE = 0.0065 # K/m
GRAVITY = 9.80665 # m/s²
class Psychrometrics:
"""Class for psychrometric calculations."""
# --- Input Validation (Preserved and slightly enhanced) --- #
@staticmethod
def validate_inputs(t_db: Optional[float] = None, rh: Optional[float] = None,
w: Optional[float] = None, h: Optional[float] = None,
p_atm: Optional[float] = None) -> None:
"""
Validate input parameters for psychrometric calculations.
Args:
t_db: Dry-bulb temperature in °C
rh: Relative humidity in % (0-100)
w: Humidity ratio (kg/kg)
h: Enthalpy (J/kg)
p_atm: Atmospheric pressure in Pa
Raises:
ValueError: If inputs are invalid
"""
if t_db is not None and not -100 <= t_db <= 200: # Wider range for intermediate calcs
raise ValueError(f"Temperature {t_db}°C must be within a reasonable range (-100°C to 200°C)")
if rh is not None and not 0 <= rh <= 100:
# Allow slightly > 100 due to calculation tolerances, clamp later
if rh < 0 or rh > 105:
raise ValueError(f"Relative humidity {rh}% must be between 0 and 100%")
if w is not None and w < 0:
raise ValueError(f"Humidity ratio {w} cannot be negative")
# Enthalpy can be negative relative to datum
# if h is not None and h < 0:
# raise ValueError(f"Enthalpy {h} cannot be negative")
if p_atm is not None and not 10000 <= p_atm <= 120000: # Typical atmospheric range
raise ValueError(f"Atmospheric pressure {p_atm} Pa must be within a reasonable range (10kPa to 120kPa)")
# --- Altitude/Pressure Calculation (Added based on plan) --- #
@staticmethod
def pressure_at_altitude(altitude: float, sea_level_pressure: float = ATMOSPHERIC_PRESSURE,
sea_level_temp_c: float = 15.0) -> float:
"""
Calculate atmospheric pressure at a given altitude using the standard atmosphere model.
Reference: https://en.wikipedia.org/wiki/Barometric_formula
Args:
altitude: Altitude above sea level in meters.
sea_level_pressure: Pressure at sea level in Pa (default: 101325 Pa).
sea_level_temp_c: Temperature at sea level in °C (default: 15 °C).
Returns:
Atmospheric pressure at the given altitude in Pa.
"""
if altitude < -500 or altitude > 80000: # Valid range for model
logger.warning(f"Altitude {altitude}m is outside the typical range for the standard atmosphere model.")
sea_level_temp_k = sea_level_temp_c + 273.15
r_da = GAS_CONSTANT_DRY_AIR
# Formula assumes constant lapse rate up to 11km
if altitude <= 11000:
temp_k = sea_level_temp_k - LAPSE_RATE * altitude
pressure = sea_level_pressure * (temp_k / sea_level_temp_k) ** (GRAVITY / (LAPSE_RATE * r_da))
else:
# Simplified: Use constant temperature above 11km (tropopause)
# A more complex model is needed for higher altitudes
logger.warning("Altitude > 11km. Using simplified pressure calculation.")
temp_11km = sea_level_temp_k - LAPSE_RATE * 11000
pressure_11km = sea_level_pressure * (temp_11km / sea_level_temp_k) ** (GRAVITY / (LAPSE_RATE * r_da))
pressure = pressure_11km * math.exp(-GRAVITY * (altitude - 11000) / (r_da * temp_11km))
return pressure
# --- Core Psychrometric Functions (Preserved from original) --- #
@staticmethod
def saturation_pressure(t_db: float) -> float:
"""
Calculate saturation pressure of water vapor.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equations 5 and 6.
Args:
t_db: Dry-bulb temperature in °C
Returns:
Saturation pressure in Pa
"""
# Input validation is implicitly handled by usage, but can be added
# Psychrometrics.validate_inputs(t_db=t_db)
t_k = t_db + 273.15
if t_k <= 0:
# Avoid issues with log(T) or 1/T at or below absolute zero
return 0.0
if t_db >= 0:
# Eq 6 (ASHRAE 2017) - Renamed from Eq 5 in older versions
C1 = -5.8002206E+03
C2 = 1.3914993E+00
C3 = -4.8640239E-02
C4 = 4.1764768E-05
C5 = -1.4452093E-08
C6 = 6.5459673E+00
ln_p_ws = C1/t_k + C2 + C3*t_k + C4*t_k**2 + C5*t_k**3 + C6*math.log(t_k)
else:
# Eq 5 (ASHRAE 2017) - Renamed from Eq 6 in older versions
C7 = -5.6745359E+03
C8 = 6.3925247E+00
C9 = -9.6778430E-03
C10 = 6.2215701E-07
C11 = 2.0747825E-09
C12 = -9.4840240E-13
C13 = 4.1635019E+00
ln_p_ws = C7/t_k + C8 + C9*t_k + C10*t_k**2 + C11*t_k**3 + C12*t_k**4 + C13*math.log(t_k)
p_ws = math.exp(ln_p_ws)
return p_ws
@staticmethod
def humidity_ratio(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate humidity ratio (mass of water vapor per unit mass of dry air).
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 20, 12.
Args:
t_db: Dry-bulb temperature in °C
rh: Relative humidity (0-100)
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Humidity ratio in kg water vapor / kg dry air
"""
Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
rh_decimal = max(0.0, min(1.0, rh / 100.0)) # Clamp RH
p_ws = Psychrometrics.saturation_pressure(t_db)
p_w = rh_decimal * p_ws # Eq 12
# Check if partial pressure exceeds atmospheric pressure (physically impossible)
if p_w >= p_atm:
# This usually indicates very high temp or incorrect pressure
logger.warning(f"Calculated partial pressure {p_w:.1f} Pa >= atmospheric pressure {p_atm:.1f} Pa at T={t_db}°C, RH={rh}%. Clamping humidity ratio.")
# Return saturation humidity ratio at p_atm (boiling point)
p_w_sat_at_p_atm = p_atm # Water boils when p_ws = p_atm
w = 0.621945 * p_w_sat_at_p_atm / (p_atm - p_w_sat_at_p_atm + 1e-9) # Add small epsilon to avoid division by zero
return w
# raise ValueError(f"Partial pressure {p_w:.1f} Pa cannot exceed atmospheric pressure {p_atm:.1f} Pa")
# Eq 20
w = 0.621945 * p_w / (p_atm - p_w)
return max(0.0, w) # Ensure non-negative
@staticmethod
def relative_humidity(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate relative humidity from humidity ratio.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 22, 12.
Args:
t_db: Dry-bulb temperature in °C
w: Humidity ratio in kg water vapor / kg dry air
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Relative humidity (0-100)
"""
Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
w = max(0.0, w) # Ensure non-negative
p_ws = Psychrometrics.saturation_pressure(t_db)
# Eq 22 (Rearranged from Eq 20)
p_w = p_atm * w / (0.621945 + w)
if p_ws <= 0:
# Avoid division by zero at very low temperatures
return 0.0
# Eq 12 (Definition of RH)
rh = 100.0 * p_w / p_ws
return max(0.0, min(100.0, rh)) # Clamp RH between 0 and 100
@staticmethod
def wet_bulb_temperature(t_db: float, rh: Optional[float] = None, w: Optional[float] = None,
p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate wet-bulb temperature using an iterative method or direct formula if applicable.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 33, 35.
Stull, R. (2011). "Wet-Bulb Temperature from Relative Humidity and Air Temperature". Journal of Applied Meteorology and Climatology.
Args:
t_db: Dry-bulb temperature in °C
rh: Relative humidity (0-100) (either rh or w must be provided)
w: Humidity ratio (kg/kg) (either rh or w must be provided)
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Wet-bulb temperature in °C
"""
if rh is None and w is None:
raise ValueError("Either relative humidity (rh) or humidity ratio (w) must be provided.")
if rh is not None:
Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
w_actual = Psychrometrics.humidity_ratio(t_db, rh, p_atm)
elif w is not None:
Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
w_actual = w
else:
raise ValueError("Calculation error in wet_bulb_temperature input handling.") # Should not happen
# --- Using Stull's empirical formula (approximation) --- #
# Provides a good initial guess or can be used directly for moderate accuracy
try:
rh_actual = Psychrometrics.relative_humidity(t_db, w_actual, p_atm)
rh_decimal = rh_actual / 100.0
t_wb_stull = (t_db * math.atan(0.151977 * (rh_actual + 8.313659)**0.5) +
math.atan(t_db + rh_actual) -
math.atan(rh_actual - 1.676331) +
0.00391838 * (rh_actual**1.5) * math.atan(0.023101 * rh_actual) -
4.686035)
# Check if Stull's result is reasonable (e.g., t_wb <= t_db)
if t_wb_stull <= t_db and abs(t_wb_stull - t_db) < 50: # Basic sanity check
# Use Stull's value as a very good starting point for iteration
t_wb_guess = t_wb_stull
else:
t_wb_guess = t_db * 0.8 # Fallback guess
except Exception:
t_wb_guess = t_db * 0.8 # Fallback guess if Stull's formula fails
# --- Iterative solution based on ASHRAE Eq 33/35 --- #
t_wb = t_wb_guess
max_iterations = 100
tolerance_w = 1e-7 # Tolerance on humidity ratio
for i in range(max_iterations):
# Saturation humidity ratio at current guess of t_wb
p_ws_wb = Psychrometrics.saturation_pressure(t_wb)
w_s_wb = 0.621945 * p_ws_wb / (p_atm - p_ws_wb)
w_s_wb = max(0.0, w_s_wb)
# Humidity ratio calculated from energy balance (Eq 33/35 rearranged)
# Using simplified specific heats for this iterative approach
c_pa = 1006 # J/(kg·K)
c_pw = 1860 # J/(kg·K)
h_fg_wb = Psychrometrics.latent_heat_of_vaporization(t_wb) # J/kg
# Eq 35 rearranged to find W based on Tdb, Twb, Ws_wb
numerator = (c_pa + w_s_wb * c_pw) * t_wb - c_pa * t_db
denominator = (c_pa + w_s_wb * c_pw) * t_wb - (c_pw * t_db + h_fg_wb)
# Avoid division by zero if denominator is close to zero
if abs(denominator) < 1e-6:
# This might happen near saturation, check if w_actual is close to w_s_wb
if abs(w_actual - w_s_wb) < tolerance_w * 10:
break # Converged near saturation
else:
# Adjust guess differently if denominator is zero
t_wb -= 0.05 * (1 if w_s_wb > w_actual else -1)
continue
w_calc_from_wb = w_s_wb + numerator / denominator
# Check convergence
if abs(w_actual - w_calc_from_wb) < tolerance_w:
break
# Adjust wet-bulb temperature guess (simple step adjustment)
# A more sophisticated root-finding method (like Newton-Raphson) could be used here
step = 0.1 # Initial step size
if i > 10: step = 0.01 # Smaller steps later
if i > 50: step = 0.001
if w_calc_from_wb > w_actual:
t_wb -= step # Calculated W is too high, need lower Twb
else:
t_wb += step # Calculated W is too low, need higher Twb
# Ensure t_wb doesn't exceed t_db
t_wb = min(t_wb, t_db)
else:
# If loop finishes without break, convergence failed
logger.warning(f"Wet bulb calculation did not converge after {max_iterations} iterations for Tdb={t_db}, W={w_actual:.6f}. Result: {t_wb:.3f}")
# Ensure Twb <= Tdb
return min(t_wb, t_db)
@staticmethod
def dew_point_temperature(t_db: Optional[float] = None, rh: Optional[float] = None,
w: Optional[float] = None, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate dew point temperature.
Uses the relationship Tdp = T(Pw) where Pw is partial pressure.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equations 5, 6, 37.
Args:
t_db: Dry-bulb temperature in °C (required if rh is given)
rh: Relative humidity (0-100) (either rh or w must be provided)
w: Humidity ratio (kg/kg) (either rh or w must be provided)
p_atm: Atmospheric pressure in Pa (required if w is given)
Returns:
Dew point temperature in °C
"""
if rh is None and w is None:
raise ValueError("Either relative humidity (rh) or humidity ratio (w) must be provided.")
if rh is not None:
if t_db is None:
raise ValueError("Dry-bulb temperature (t_db) must be provided if relative humidity (rh) is given.")
Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
rh_decimal = max(0.0, min(1.0, rh / 100.0))
p_ws = Psychrometrics.saturation_pressure(t_db)
p_w = rh_decimal * p_ws
elif w is not None:
Psychrometrics.validate_inputs(w=w, p_atm=p_atm)
w = max(0.0, w)
# Eq 22 (Rearranged from Eq 20)
p_w = p_atm * w / (0.621945 + w)
else:
raise ValueError("Calculation error in dew_point_temperature input handling.") # Should not happen
if p_w <= 0:
# Handle case of zero humidity
return -100.0 # Or some other indicator of very dry air
# Find temperature at which saturation pressure equals partial pressure p_w
# This requires inverting the saturation pressure formula (Eq 5/6)
# Using iterative approach or approximation formula (like Magnus formula or ASHRAE Eq 37/38)
# Using ASHRAE 2017 Eq 37 & 38 (approximation)
alpha = math.log(p_w / 610.71) # Note: ASHRAE uses Pw in Pa, but older formulas used kPa. Using Pa here. Ref: Eq 3/4
# Eq 38 for Tdp >= 0
t_dp_pos = (18.678 - alpha / 234.5) * alpha / (257.14 + alpha / 234.5 * alpha)
# Eq 37 for Tdp < 0
t_dp_neg = 6.09 + 12.608 * alpha + 0.4959 * alpha**2 # This seems less accurate based on testing
# Alternative Magnus formula approximation (often used):
# Constants for Magnus formula (approximation)
# A = 17.625
# B = 243.04
# gamma = math.log(rh_decimal) + (A * t_db) / (B + t_db)
# t_dp_magnus = (B * gamma) / (A - gamma)
# Iterative approach for higher accuracy (finding T such that Pws(T) = Pw)
# Start guess near Tdb or using approximation
t_dp_guess = t_dp_pos # Use ASHRAE approximation as starting point
max_iterations = 20
tolerance_p = 0.1 # Pa tolerance
for i in range(max_iterations):
p_ws_at_guess = Psychrometrics.saturation_pressure(t_dp_guess)
error = p_w - p_ws_at_guess
if abs(error) < tolerance_p:
break
# Estimate derivative d(Pws)/dT (Clausius-Clapeyron approximation)
# L = Psychrometrics.latent_heat_of_vaporization(t_dp_guess)
# Rv = GAS_CONSTANT_WATER_VAPOR
# T_k = t_dp_guess + 273.15
# dP_dT = (p_ws_at_guess * L) / (Rv * T_k**2)
# A simpler approximation for derivative:
p_ws_plus = Psychrometrics.saturation_pressure(t_dp_guess + 0.01)
dP_dT = (p_ws_plus - p_ws_at_guess) / 0.01
if abs(dP_dT) < 1e-3: # Avoid division by small number if derivative is near zero
break
# Newton-Raphson step
t_dp_guess += error / dP_dT
else:
logger.debug(f"Dew point iteration did not fully converge for Pw={p_w:.2f} Pa. Result: {t_dp_guess:.3f}")
return t_dp_guess
@staticmethod
def latent_heat_of_vaporization(t_db: float) -> float:
"""
Calculate latent heat of vaporization of water at a given temperature.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 2.
Args:
t_db: Dry-bulb temperature in °C
Returns:
Latent heat of vaporization (h_fg) in J/kg
"""
# Eq 2 (Approximation)
h_fg = (2501 - 2.361 * t_db) * 1000 # Convert kJ/kg to J/kg
return h_fg
@staticmethod
def enthalpy(t_db: float, w: float) -> float:
"""
Calculate specific enthalpy of moist air.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30.
Datum: 0 J/kg for dry air at 0°C, 0 J/kg for saturated liquid water at 0°C.
Args:
t_db: Dry-bulb temperature in °C
w: Humidity ratio in kg water vapor / kg dry air
Returns:
Specific enthalpy in J/kg dry air
"""
Psychrometrics.validate_inputs(t_db=t_db, w=w)
w = max(0.0, w)
# Using more accurate specific heats if needed, but ASHRAE Eq 30 uses constants:
c_pa = 1006 # Specific heat of dry air in J/(kg·K)
h_g0 = 2501000 # Enthalpy of water vapor at 0°C in J/kg
c_pw = 1860 # Specific heat of water vapor in J/(kg·K)
# Eq 30
h = c_pa * t_db + w * (h_g0 + c_pw * t_db)
return h
@staticmethod
def specific_volume(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate specific volume of moist air.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 26.
Args:
t_db: Dry-bulb temperature in °C
w: Humidity ratio in kg water vapor / kg dry air
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Specific volume in m³/kg dry air
"""
Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
w = max(0.0, w)
t_k = t_db + 273.15
r_da = GAS_CONSTANT_DRY_AIR
# Eq 26 (Ideal Gas Law for moist air)
# Factor 1.607858 is Ratio of MW_air / MW_water approx (28.9645 / 18.01534)
v = (r_da * t_k / p_atm) * (1 + 1.607858 * w)
return v
@staticmethod
def density(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate density of moist air.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, derived from Equation 26.
Density = Mass / Volume = (Mass Dry Air + Mass Water Vapor) / Volume
= (1 + w) / specific_volume
Args:
t_db: Dry-bulb temperature in °C
w: Humidity ratio in kg water vapor / kg dry air
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
Returns:
Density in kg moist air / m³
"""
Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
w = max(0.0, w)
v = Psychrometrics.specific_volume(t_db, w, p_atm) # m³/kg dry air
if v <= 0:
raise ValueError("Calculated specific volume is non-positive, cannot calculate density.")
# Density = mass_total / volume = (mass_dry_air + mass_water) / volume
# Since v = volume / mass_dry_air, then density = (1 + w) / v
rho = (1 + w) / v
return rho
# --- Comprehensive Property Calculation (Preserved) --- #
@staticmethod
def moist_air_properties(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE,
altitude: Optional[float] = None) -> Dict[str, float]:
"""
Calculate all psychrometric properties of moist air.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1.
Args:
t_db: Dry-bulb temperature in °C
rh: Relative humidity (0-100)
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure).
If altitude is provided, p_atm is calculated and this value is ignored.
altitude: Altitude in meters (optional). If provided, calculates pressure at altitude.
Returns:
Dictionary with all psychrometric properties.
"""
if altitude is not None:
p_atm_calc = Psychrometrics.pressure_at_altitude(altitude)
logger.debug(f"Calculated pressure at altitude {altitude}m: {p_atm_calc:.0f} Pa")
p_atm_used = p_atm_calc
else:
p_atm_used = p_atm
Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm_used)
rh_clamped = max(0.0, min(100.0, rh))
w = Psychrometrics.humidity_ratio(t_db, rh_clamped, p_atm_used)
t_wb = Psychrometrics.wet_bulb_temperature(t_db, rh=rh_clamped, w=w, p_atm=p_atm_used)
t_dp = Psychrometrics.dew_point_temperature(t_db=t_db, rh=rh_clamped, w=w, p_atm=p_atm_used)
h = Psychrometrics.enthalpy(t_db, w)
v = Psychrometrics.specific_volume(t_db, w, p_atm_used)
rho = Psychrometrics.density(t_db, w, p_atm_used)
p_ws = Psychrometrics.saturation_pressure(t_db)
p_w = (rh_clamped / 100.0) * p_ws
return {
"dry_bulb_temperature_c": t_db,
"wet_bulb_temperature_c": t_wb,
"dew_point_temperature_c": t_dp,
"relative_humidity_percent": rh_clamped,
"humidity_ratio_kg_kg": w,
"enthalpy_j_kg": h,
"specific_volume_m3_kg": v,
"density_kg_m3": rho,
"saturation_pressure_pa": p_ws,
"partial_pressure_pa": p_w,
"atmospheric_pressure_pa": p_atm_used
}
# --- Inverse Functions (Preserved) --- #
@staticmethod
def find_humidity_ratio_for_enthalpy(t_db: float, h: float) -> float:
"""
Find humidity ratio for a given dry-bulb temperature and enthalpy.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30 (rearranged).
Args:
t_db: Dry-bulb temperature in °C
h: Specific enthalpy in J/kg dry air
Returns:
Humidity ratio in kg water vapor / kg dry air
"""
Psychrometrics.validate_inputs(t_db=t_db, h=h)
c_pa = 1006
h_g0 = 2501000
c_pw = 1860
denominator = (h_g0 + c_pw * t_db)
if abs(denominator) < 1e-6:
# Avoid division by zero, happens at specific low temps where denominator is zero
logger.warning(f"Denominator near zero in find_humidity_ratio_for_enthalpy at Tdb={t_db}. Enthalpy {h} may be inconsistent.")
return 0.0 # Or raise error
w = (h - c_pa * t_db) / denominator
return max(0.0, w) # Humidity ratio cannot be negative
@staticmethod
def find_temperature_for_enthalpy(w: float, h: float) -> float:
"""
Find dry-bulb temperature for a given humidity ratio and enthalpy.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30 (rearranged).
Args:
w: Humidity ratio in kg water vapor / kg dry air
h: Specific enthalpy in J/kg dry air
Returns:
Dry-bulb temperature in °C
"""
Psychrometrics.validate_inputs(w=w, h=h)
w = max(0.0, w)
c_pa = 1006
h_g0 = 2501000
c_pw = 1860
denominator = (c_pa + w * c_pw)
if abs(denominator) < 1e-6:
raise ValueError(f"Cannot calculate temperature: denominator (Cp_a + w*Cp_w) is near zero for w={w}")
t_db = (h - w * h_g0) / denominator
# Validate the result is within reasonable bounds
Psychrometrics.validate_inputs(t_db=t_db)
return t_db
# --- Heat Ratio and Flow Rate (Preserved) --- #
@staticmethod
def sensible_heat_ratio(q_sensible: float, q_total: float) -> float:
"""
Calculate sensible heat ratio (SHR).
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.5.
Args:
q_sensible: Sensible heat load in W (can be negative for cooling)
q_total: Total heat load in W (sensible + latent) (can be negative for cooling)
Returns:
Sensible heat ratio (typically 0 to 1 for cooling, can be >1 or <0 in some cases)
"""
if abs(q_total) < 1e-9: # Avoid division by zero
# If total load is zero, SHR is undefined or can be considered 1 if only sensible exists
return 1.0 if abs(q_sensible) < 1e-9 else (1.0 if q_sensible > 0 else -1.0) # Or np.nan
shr = q_sensible / q_total
return shr
@staticmethod
def air_flow_rate_for_load(q_sensible: float, delta_t: float,
rho: Optional[float] = None, cp: float = 1006,
altitude: Optional[float] = None) -> float:
"""
Calculate volumetric air flow rate required to meet a sensible load.
Formula: q_sensible = m_dot * cp * delta_t = (rho * V_dot) * cp * delta_t
V_dot = q_sensible / (rho * cp * delta_t)
Args:
q_sensible: Sensible heat load in W.
delta_t: Temperature difference between supply and return air in °C (or K).
rho: Density of air in kg/m³ (optional, will use standard density if None).
cp: Specific heat of air in J/(kg·K) (default: 1006).
altitude: Altitude in meters (optional, used to estimate density if rho is None).
Returns:
Volumetric air flow rate (V_dot) in m³/s.
"""
if abs(delta_t) < 1e-6:
raise ValueError("Delta T cannot be zero for air flow rate calculation.")
if rho is None:
# Estimate density based on typical conditions or altitude
if altitude is not None:
p_atm_alt = Psychrometrics.pressure_at_altitude(altitude)
# Assume typical indoor conditions for density calculation
rho = Psychrometrics.density(t_db=22, w=0.008, p_atm=p_atm_alt)
else:
# Use standard sea level density as approximation
rho = Psychrometrics.density(t_db=20, w=0.0075) # Approx 1.2 kg/m³
logger.debug(f"Using estimated air density: {rho:.3f} kg/m³")
if rho <= 0:
raise ValueError("Air density must be positive.")
v_dot = q_sensible / (rho * cp * delta_t)
return v_dot
# --- Air Mixing Function (Added based on plan) --- #
@staticmethod
def mix_air_streams(stream1: Dict[str, float], stream2: Dict[str, float],
p_atm: float = ATMOSPHERIC_PRESSURE) -> Dict[str, float]:
"""
Calculate the properties of a mixture of two moist air streams.
Assumes adiabatic mixing at constant pressure.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.4.
Args:
stream1: Dict for stream 1 containing keys: 'flow_rate' (m³/s), 't_db' (°C), 'rh' (%) OR 'w' (kg/kg).
stream2: Dict for stream 2 containing keys: 'flow_rate' (m³/s), 't_db' (°C), 'rh' (%) OR 'w' (kg/kg).
p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure).
Returns:
Dictionary with properties of the mixed stream: 't_db', 'w', 'rh', 'h', 'flow_rate'.
Raises:
ValueError: If input dictionaries are missing required keys or have invalid values.
"""
# Validate inputs and get full properties for each stream
props1 = {}
props2 = {}
try:
t_db1 = stream1['t_db']
flow1 = stream1['flow_rate']
if 'rh' in stream1:
props1 = Psychrometrics.moist_air_properties(t_db1, stream1['rh'], p_atm)
elif 'w' in stream1:
w1 = stream1['w']
Psychrometrics.validate_inputs(t_db=t_db1, w=w1, p_atm=p_atm)
props1 = Psychrometrics.moist_air_properties(t_db1, Psychrometrics.relative_humidity(t_db1, w1, p_atm), p_atm)
else:
raise ValueError("Stream 1 must contain 'rh' or 'w'.")
if flow1 < 0: raise ValueError("Stream 1 flow rate cannot be negative.")
m_dot1 = flow1 * props1['density_kg_m3'] # Mass flow rate kg/s
t_db2 = stream2['t_db']
flow2 = stream2['flow_rate']
if 'rh' in stream2:
props2 = Psychrometrics.moist_air_properties(t_db2, stream2['rh'], p_atm)
elif 'w' in stream2:
w2 = stream2['w']
Psychrometrics.validate_inputs(t_db=t_db2, w=w2, p_atm=p_atm)
props2 = Psychrometrics.moist_air_properties(t_db2, Psychrometrics.relative_humidity(t_db2, w2, p_atm), p_atm)
else:
raise ValueError("Stream 2 must contain 'rh' or 'w'.")
if flow2 < 0: raise ValueError("Stream 2 flow rate cannot be negative.")
m_dot2 = flow2 * props2['density_kg_m3'] # Mass flow rate kg/s
except KeyError as e:
raise ValueError(f"Missing required key in input stream dictionary: {e}")
except ValueError as e:
raise ValueError(f"Invalid input value: {e}")
# Total mass flow rate
m_dot_mix = m_dot1 + m_dot2
if m_dot_mix <= 1e-9: # Avoid division by zero if total flow is zero
logger.warning("Total mass flow rate for mixing is zero. Returning properties of stream 1 (or empty dict if flow1 is also zero).")
if m_dot1 > 1e-9:
return {
't_db': props1['dry_bulb_temperature_c'],
'w': props1['humidity_ratio_kg_kg'],
'rh': props1['relative_humidity_percent'],
'h': props1['enthalpy_j_kg'],
'flow_rate': flow1
}
else: # Both flows are zero
return {'t_db': 0, 'w': 0, 'rh': 0, 'h': 0, 'flow_rate': 0}
# Mass balance for humidity ratio
w_mix = (m_dot1 * props1['humidity_ratio_kg_kg'] + m_dot2 * props2['humidity_ratio_kg_kg']) / m_dot_mix
# Energy balance for enthalpy
h_mix = (m_dot1 * props1['enthalpy_j_kg'] + m_dot2 * props2['enthalpy_j_kg']) / m_dot_mix
# Find mixed temperature from mixed enthalpy and humidity ratio
t_db_mix = Psychrometrics.find_temperature_for_enthalpy(w_mix, h_mix)
# Find mixed relative humidity
rh_mix = Psychrometrics.relative_humidity(t_db_mix, w_mix, p_atm)
# Calculate mixed flow rate (volume)
# Need density at mixed conditions
rho_mix = Psychrometrics.density(t_db_mix, w_mix, p_atm)
flow_mix = m_dot_mix / rho_mix if rho_mix > 0 else 0
return {
't_db': t_db_mix,
'w': w_mix,
'rh': rh_mix,
'h': h_mix,
'flow_rate': flow_mix
}
# Example Usage (Preserved and expanded)
if __name__ == "__main__":
# Test basic properties
t_db_test = 25.0
rh_test = 50.0
p_atm_test = 101325.0
altitude_test = 1500 # meters
print(f"--- Properties at T={t_db_test}°C, RH={rh_test}%, P={p_atm_test} Pa ---")
props_sea_level = Psychrometrics.moist_air_properties(t_db_test, rh_test, p_atm_test)
for key, value in props_sea_level.items():
print(f"{key}: {value:.6f}")
print(f"\n--- Properties at T={t_db_test}°C, RH={rh_test}%, Altitude={altitude_test} m ---")
props_altitude = Psychrometrics.moist_air_properties(t_db_test, rh_test, altitude=altitude_test)
for key, value in props_altitude.items():
print(f"{key}: {value:.6f}")
p_calc_alt = Psychrometrics.pressure_at_altitude(altitude_test)
pressure_diff = abs(p_calc_alt - props_altitude["atmospheric_pressure_pa"]) < 1e-3
print(f"Calculated pressure at {altitude_test}m: {p_calc_alt:.0f} Pa (matches: {pressure_diff})")
# Test air mixing
print("\n--- Air Mixing Test ---")
stream_a = {'flow_rate': 1.0, 't_db': 30.0, 'rh': 60.0} # m³/s, °C, %
stream_b = {'flow_rate': 0.5, 't_db': 15.0, 'w': 0.005} # m³/s, °C, kg/kg
p_mix = 100000.0 # Pa
print(f"Stream A: {stream_a}")
print(f"Stream B: {stream_b}")
print(f"Mixing at Pressure: {p_mix} Pa")
try:
mixed_props = Psychrometrics.mix_air_streams(stream_a, stream_b, p_atm=p_mix)
print("\nMixed Stream Properties:")
for key, value in mixed_props.items():
print(f"{key}: {value:.6f}")
except ValueError as e:
print(f"\nError during mixing calculation: {e}")
# Test edge cases
print("\n--- Edge Case Tests ---")
try:
print(f"Dew point at 5°C, 100% RH: {Psychrometrics.dew_point_temperature(t_db=5.0, rh=100.0):.3f}°C")
print(f"Dew point at -10°C, 80% RH: {Psychrometrics.dew_point_temperature(t_db=-10.0, rh=80.0):.3f}°C")
print(f"Wet bulb at 30°C, 100% RH: {Psychrometrics.wet_bulb_temperature(t_db=30.0, rh=100.0):.3f}°C")
print(f"Wet bulb at -5°C, 50% RH: {Psychrometrics.wet_bulb_temperature(t_db=-5.0, rh=50.0):.3f}°C")
# Test high temp / high humidity
props_hot_humid = Psychrometrics.moist_air_properties(t_db=50, rh=90, p_atm=101325)
humidity_ratio = props_hot_humid["humidity_ratio_kg_kg"]
enthalpy = props_hot_humid["enthalpy_j_kg"]
print(f"Properties at 50°C, 90% RH: W={humidity_ratio:.6f}, H={enthalpy:.0f}")
except ValueError as e:
print(f"Error during edge case test: {e}")
|