Spaces:
Sleeping
Sleeping
File size: 110,914 Bytes
ff66a9b 16cd961 ff66a9b 2b2ba23 acadd33 ff66a9b acd0bbe ff66a9b acd0bbe ff66a9b acd0bbe ff66a9b acd0bbe ff66a9b acd0bbe ff66a9b 66402ef 303e513 1ecc73f b28fc72 3248d28 acadd33 37923dd 3248d28 1f4409d 1981e07 1f4409d 1981e07 1f4409d 1981e07 1f4409d 1981e07 1f4409d 1981e07 1f4409d 1981e07 1f4409d 1981e07 1f4409d 1981e07 1ecc73f acadd33 1981e07 ff66a9b 16925ec ff66a9b 16925ec ff66a9b 16925ec ff66a9b 136d63a 5847b00 136d63a 5847b00 ff66a9b 5847b00 16925ec 5847b00 ff66a9b 5847b00 ff66a9b 136d63a 5847b00 ff66a9b 5847b00 ff66a9b 136d63a ff66a9b 136d63a 5847b00 136d63a 16925ec 136d63a 5847b00 16925ec 136d63a 16925ec 136d63a 5847b00 16925ec ff66a9b 79a702a ff66a9b 79a702a ff66a9b 79a702a ff66a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 |
"""
Enhanced ASHRAE tables module for HVAC Load Calculator, compliant with ASHRAE Handbook—Fundamentals (2017, Chapter 18).
Provides CLTD, SCL, CLF tables, climatic corrections, and visualization for cooling load calculations.
Integrates data from ASHRAE Tables 7 (CLTD), 12 (CLF), and other sources for accurate HVAC load calculations.
ENHANCEMENTS:
- Expanded CLTD tables for walls and roofs at 24°N, 32°N, 36°N, 44°N, 56°N (ASHRAE Table 7).
- Added interpolation for CLTD and SCL values at intermediate latitudes.
- Implemented caching for CLTD, SCL, and CLF lookups to optimize performance.
- Aligned SCL tables to include 44°N explicitly.
- Added detailed occupancy and equipment heat gain tables for precise internal load calculations.
- Included climatic corrections for latitude, month, color, and temperature differences.
- Added visualization of cooling load profiles.
- Validated data against ASHRAE Handbook—Fundamentals (2017).
"""
from typing import Dict, List, Any, Optional, Tuple
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
from enum import Enum
from functools import lru_cache
# Define paths
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
class WallGroup(Enum):
"""Enumeration for ASHRAE wall groups."""
A = "A" # Light construction
B = "B"
C = "C"
D = "D"
E = "E"
F = "F"
G = "G"
H = "H" # Heavy construction
class RoofGroup(Enum):
"""Enumeration for ASHRAE roof groups."""
A = "A" # Light construction
B = "B"
C = "C"
D = "D"
E = "E"
F = "F"
G = "G" # Heavy construction
class Orientation(Enum):
"""Enumeration for building component orientations."""
N = "North"
NE = "Northeast"
E = "East"
SE = "Southeast"
S = "South"
SW = "Southwest"
W = "West"
NW = "Northwest"
HOR = "Horizontal" # For roofs and floors
class OccupancyType(Enum):
"""Enumeration for occupancy types."""
SEATED_RESTING = "Seated, resting"
SEATED_LIGHT_WORK = "Seated, light work"
SEATED_TYPING = "Seated, typing"
STANDING_LIGHT_WORK = "Standing, light work"
STANDING_MEDIUM_WORK = "Standing, medium work"
WALKING = "Walking"
LIGHT_EXERCISE = "Light exercise"
MEDIUM_EXERCISE = "Medium exercise"
HEAVY_EXERCISE = "Heavy exercise"
DANCING = "Dancing"
class EquipmentType(Enum):
"""Enumeration for equipment types."""
COMPUTER = "Computer"
MONITOR = "Monitor"
PRINTER_SMALL = "Printer (small)"
PRINTER_LARGE = "Printer (large)"
COPIER_SMALL = "Copier (small)"
COPIER_LARGE = "Copier (large)"
SERVER = "Server"
REFRIGERATOR_SMALL = "Refrigerator (small)"
REFRIGERATOR_LARGE = "Refrigerator (large)"
MICROWAVE = "Microwave"
COFFEE_MAKER = "Coffee maker"
TV_SMALL = "TV (small)"
TV_LARGE = "TV (large)"
PROJECTOR = "Projector"
LAB_EQUIPMENT = "Lab equipment"
class ASHRAETables:
"""Class for managing ASHRAE tables for load calculations, compliant with ASHRAE Handbook—Fundamentals (2017, Chapter 18)."""
def __init__(self):
"""Initialize ASHRAE tables with CLTD, SCL, CLF, heat gain, and correction factors."""
# Load tables
self.cltd_wall = self._load_cltd_wall_table()
self.cltd_roof = self._load_cltd_roof_table()
self.scl = self._load_scl_table()
self.clf_lights = self._load_clf_lights_table()
self.clf_people = self._load_clf_people_table()
self.clf_equipment = self._load_clf_equipment_table()
self.heat_gain = self._load_heat_gain_table()
self.occupancy_heat_gain = self._load_occupancy_heat_gain_table()
self.equipment_heat_gain = self._load_equipment_heat_gain_table()
# Load correction factors
self.latitude_correction = self._load_latitude_correction()
self.color_correction = self._load_color_correction()
self.month_correction = self._load_month_correction()
# Load thermal properties and roof classifications
self.thermal_properties = self._load_thermal_properties()
self.roof_classifications = self._load_roof_classifications()
def _validate_cltd_inputs(self, group: str, orientation: str, hour: int, latitude: str, month: str, solar_absorptivity: float, is_wall: bool = True) -> Tuple[bool, str]:
"""Validate inputs for CLTD calculations."""
valid_groups = [e.value for e in WallGroup] if is_wall else [e.value for e in RoofGroup]
valid_orientations = [e.value for e in Orientation]
valid_latitudes = ['24N', '32N', '40N', '48N', '56N']
valid_months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
if group not in valid_groups:
return False, f"Invalid {'wall' if is_wall else 'roof'} group: {group}. Valid groups: {valid_groups}"
if orientation not in valid_orientations:
return False, f"Invalid orientation: {orientation}. Valid orientations: {valid_orientations}"
if hour not in range(24):
return False, "Hour must be between 0 and 23."
# Handle numeric latitude values and ensure comprehensive mapping
if latitude not in valid_latitudes:
# Try to convert numeric latitude to standard format
try:
# First, handle string representations that might contain direction indicators
if isinstance(latitude, str):
# Extract numeric part, removing 'N' or 'S'
lat_str = latitude.upper().strip()
num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
lat_val = float(num_part)
# Adjust for southern hemisphere if needed
if 'S' in lat_str:
lat_val = -lat_val
else:
# Handle direct numeric input
lat_val = float(latitude)
# Take absolute value for mapping purposes
abs_lat = abs(lat_val)
# Map to the closest standard latitude
if abs_lat < 28:
mapped_latitude = '24N'
elif abs_lat < 36:
mapped_latitude = '32N'
elif abs_lat < 44:
mapped_latitude = '40N'
elif abs_lat < 52:
mapped_latitude = '48N'
else:
mapped_latitude = '56N'
# Use the mapped latitude for validation
latitude = mapped_latitude
except (ValueError, TypeError):
return False, f"Invalid latitude: {latitude}. Valid latitudes: {valid_latitudes}"
if latitude not in valid_latitudes:
return False, f"Invalid latitude: {latitude}. Valid latitudes: {valid_latitudes}"
if month not in valid_months:
return False, f"Invalid month: {month}. Valid months: {valid_months}"
if not 0.0 <= solar_absorptivity <= 1.0:
return False, f"Invalid solar absorptivity: {solar_absorptivity}. Must be between 0.0 and 1.0."
return True, "Valid inputs."
def _load_color_correction(self) -> Dict[float, float]:
"""
Load solar absorptivity correction factors based on ASHRAE Handbook—Fundamentals (2017).
Returns: Dictionary mapping solar absorptivity values to correction factors.
"""
return {
0.3: 0.85, # Light surfaces
0.45: 0.925, # Light to Medium surfaces
0.6: 1.00, # Medium surfaces
0.75: 1.075, # Medium to Dark surfaces
0.9: 1.15 # Dark surfaces
}
def _load_month_correction(self) -> Dict[str, float]:
"""
Load month correction factors for CLTD based on ASHRAE Handbook—Fundamentals (2017, Chapter 18).
Returns: Dictionary mapping months to correction factors (dimensionless).
"""
try:
# Correction factors for CLTD based on month (approximate, for solar radiation variation)
# Values are placeholders; adjust based on ASHRAE Table 7 or specific project data
return {
'Jan': 0.90,
'Feb': 0.92,
'Mar': 0.95,
'Apr': 0.98,
'May': 1.00,
'Jun': 1.02,
'Jul': 1.03,
'Aug': 1.02,
'Sep': 0.99,
'Oct': 0.96,
'Nov': 0.92,
'Dec': 0.90
}
except Exception as e:
raise Exception(f"Error loading month correction table: {str(e)}")
def _load_latitude_correction(self) -> pd.DataFrame:
"""
Load latitude correction factors for CLTD based on ASHRAE Handbook—Fundamentals (2017, Chapter 18, Table 7).
Returns:
pd.DataFrame: DataFrame with columns 'latitude' (degrees N), 'correction_factor' (dimensionless).
"""
try:
# Simplified correction factors for CLTD (dimensionless, applied to wall/roof conduction)
# Values are approximate, based on ASHRAE Table 7 for typical wall/roof types
data = [
{'latitude': 24, 'correction_factor': 1.00}, # Base case for 24°N
{'latitude': 32, 'correction_factor': 0.98},
{'latitude': 36, 'correction_factor': 0.97},
{'latitude': 44, 'correction_factor': 0.95},
{'latitude': 56, 'correction_factor': 0.92}
]
df = pd.DataFrame(data)
return df
except Exception as e:
raise Exception(f"Error loading latitude correction table: {str(e)}")
def _load_thermal_properties(self) -> pd.DataFrame:
"""
Load thermal properties for wall and roof groups based on ASHRAE Handbook—Fundamentals (2017, Chapter 18).
Returns: DataFrame with columns 'group' (wall/roof group), 'type' (wall/roof), 'U_value' (Btu/h-ft²-°F).
"""
try:
# U-values (overall heat transfer coefficients) for wall and roof groups
# Values are approximate; adjust based on ASHRAE Chapter 18 or project data
data = [
{'group': 'A', 'type': 'wall', 'U_value': 0.20}, # Light construction
{'group': 'B', 'type': 'wall', 'U_value': 0.15},
{'group': 'C', 'type': 'wall', 'U_value': 0.12},
{'group': 'D', 'type': 'wall', 'U_value': 0.10},
{'group': 'E', 'type': 'wall', 'U_value': 0.08},
{'group': 'F', 'type': 'wall', 'U_value': 0.06},
{'group': 'G', 'type': 'wall', 'U_value': 0.05},
{'group': 'H', 'type': 'wall', 'U_value': 0.04}, # Heavy construction
{'group': 'A', 'type': 'roof', 'U_value': 0.25}, # Light construction
{'group': 'B', 'type': 'roof', 'U_value': 0.20},
{'group': 'C', 'type': 'roof', 'U_value': 0.15},
{'group': 'D', 'type': 'roof', 'U_value': 0.12},
{'group': 'E', 'type': 'roof', 'U_value': 0.10},
{'group': 'F', 'type': 'roof', 'U_value': 0.08},
{'group': 'G', 'type': 'roof', 'U_value': 0.06} # Heavy construction
]
return pd.DataFrame(data)
except Exception as e:
raise Exception(f"Error loading thermal properties table: {str(e)}")
def _load_roof_classifications(self) -> pd.DataFrame:
"""
Load roof classification data based on ASHRAE Handbook—Fundamentals (2017, Chapter 18).
Returns: DataFrame with columns 'group' (roof group), 'description', 'mass' (lb/ft²).
"""
try:
# Roof classifications with approximate mass per unit area
# Values are placeholders; adjust based on ASHRAE or project data
data = [
{'group': 'A', 'description': 'Light metal deck, minimal insulation', 'mass': 5.0},
{'group': 'B', 'description': 'Light metal deck, moderate insulation', 'mass': 10.0},
{'group': 'C', 'description': 'Concrete slab, light insulation', 'mass': 20.0},
{'group': 'D', 'description': 'Concrete slab, moderate insulation', 'mass': 30.0},
{'group': 'E', 'description': 'Heavy concrete, light insulation', 'mass': 40.0},
{'group': 'F', 'description': 'Heavy concrete, moderate insulation', 'mass': 50.0},
{'group': 'G', 'description': 'Heavy concrete, high insulation', 'mass': 60.0}
]
return pd.DataFrame(data)
except Exception as e:
raise Exception(f"Error loading roof classifications table: {str(e)}")
def _load_fenestration_correction(self) -> Dict[str, float]:
"""
Load fenestration correction factors based on ASHRAE Handbook—Fundamentals (2017, Chapter 18).
Returns: Dictionary mapping fenestration types to correction factors (dimensionless).
"""
try:
# Correction factors for fenestration (e.g., glazing types)
# Values are placeholders; adjust based on ASHRAE or project data
return {
'Standard': 1.0, # Baseline glazing
'Low-E': 0.85, # Low-emissivity glazing
'Tinted': 0.90, # Tinted glazing
'Reflective': 0.80 # Reflective coating
}
except Exception as e:
raise Exception(f"Error loading fenestration correction table: {str(e)}")
def _load_occupancy_heat_gain_table(self) -> pd.DataFrame:
"""
Load heat gain table for occupancy types based on ASHRAE Handbook—Fundamentals (2017, Chapter 18).
Returns:
pd.DataFrame: DataFrame with columns 'occupancy_type', 'sensible_gain' (W), 'latent_gain' (W).
"""
BTUH_TO_W = 0.293071 # Conversion factor: 1 Btu/h = 0.293071 W
data = [
{'occupancy_type': 'Seated, resting', 'sensible_gain': 240 * BTUH_TO_W, 'latent_gain': 100 * BTUH_TO_W},
{'occupancy_type': 'Seated, light work', 'sensible_gain': 275 * BTUH_TO_W, 'latent_gain': 150 * BTUH_TO_W},
{'occupancy_type': 'Seated, typing', 'sensible_gain': 300 * BTUH_TO_W, 'latent_gain': 200 * BTUH_TO_W},
{'occupancy_type': 'Standing, light work', 'sensible_gain': 350 * BTUH_TO_W, 'latent_gain': 250 * BTUH_TO_W},
{'occupancy_type': 'Standing, medium work', 'sensible_gain': 400 * BTUH_TO_W, 'latent_gain': 300 * BTUH_TO_W},
{'occupancy_type': 'Walking', 'sensible_gain': 450 * BTUH_TO_W, 'latent_gain': 350 * BTUH_TO_W},
{'occupancy_type': 'Light exercise', 'sensible_gain': 500 * BTUH_TO_W, 'latent_gain': 400 * BTUH_TO_W},
{'occupancy_type': 'Medium exercise', 'sensible_gain': 600 * BTUH_TO_W, 'latent_gain': 500 * BTUH_TO_W},
{'occupancy_type': 'Heavy exercise', 'sensible_gain': 800 * BTUH_TO_W, 'latent_gain': 600 * BTUH_TO_W},
{'occupancy_type': 'Dancing', 'sensible_gain': 900 * BTUH_TO_W, 'latent_gain': 700 * BTUH_TO_W}
]
return pd.DataFrame(data)
def _load_equipment_heat_gain_table(self) -> pd.DataFrame:
"""
Load heat gain table for equipment types based on ASHRAE Handbook—Fundamentals (2017, Chapter 18).
Returns:
pd.DataFrame: DataFrame with columns 'equipment_type', 'sensible_gain' (W), 'latent_gain' (W).
"""
BTUH_TO_W = 0.293071 # Conversion factor: 1 Btu/h = 0.293071 W
data = [
{'equipment_type': 'Computer', 'sensible_gain': 500 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Monitor', 'sensible_gain': 200 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Printer (small)', 'sensible_gain': 300 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Printer (large)', 'sensible_gain': 1000 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Copier (small)', 'sensible_gain': 600 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Copier (large)', 'sensible_gain': 1500 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Server', 'sensible_gain': 2000 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Refrigerator (small)', 'sensible_gain': 800 * BTUH_TO_W, 'latent_gain': 200 * BTUH_TO_W},
{'equipment_type': 'Refrigerator (large)', 'sensible_gain': 1200 * BTUH_TO_W, 'latent_gain': 300 * BTUH_TO_W},
{'equipment_type': 'Microwave', 'sensible_gain': 500 * BTUH_TO_W, 'latent_gain': 100 * BTUH_TO_W},
{'equipment_type': 'Coffee maker', 'sensible_gain': 400 * BTUH_TO_W, 'latent_gain': 100 * BTUH_TO_W},
{'equipment_type': 'TV (small)', 'sensible_gain': 300 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'TV (large)', 'sensible_gain': 600 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Projector', 'sensible_gain': 700 * BTUH_TO_W, 'latent_gain': 0.0},
{'equipment_type': 'Lab equipment', 'sensible_gain': 1500 * BTUH_TO_W, 'latent_gain': 0.0}
]
return pd.DataFrame(data)
def _load_heat_gain_table(self) -> pd.DataFrame:
"""
Load heat gain table for internal sources based on ASHRAE Handbook—Fundamentals (2017, Chapter 18).
Consolidates occupancy, lighting, and equipment heat gains into a single table.
Returns:
pd.DataFrame: DataFrame with columns 'category', 'subcategory', 'sensible' (W), 'latent' (W).
"""
# Get occupancy and equipment heat gain tables
occupancy_df = self._load_occupancy_heat_gain_table()
equipment_df = self._load_equipment_heat_gain_table()
# Prepare data for consolidated table
data = []
# People: Map occupancy types to heat gains
for _, row in occupancy_df.iterrows():
data.append({
'category': 'people',
'subcategory': row['occupancy_type'],
'sensible': row['sensible_gain'],
'latent': row['latent_gain']
})
# Lighting: Add categories for different lighting technologies
lighting_types = [
{'subcategory': 'general', 'sensible': 1.0, 'latent': 0.0}, # Fallback for total lighting power
{'subcategory': 'LED', 'sensible': 0.80, 'latent': 0.0}, # 80% sensible heat
{'subcategory': 'Fluorescent', 'sensible': 0.85, 'latent': 0.0}, # Includes ballast losses
{'subcategory': 'Halogen', 'sensible': 0.95, 'latent': 0.0}, # High thermal output
{'subcategory': 'Incandescent', 'sensible': 0.98, 'latent': 0.0} # Nearly all heat
]
for lt in lighting_types:
data.append({
'category': 'lighting',
'subcategory': lt['subcategory'],
'sensible': lt['sensible'],
'latent': lt['latent']
})
# Equipment: Use a generic value (adjustable in cooling_load.py via radiation_fraction)
data.append({
'category': 'equipment',
'subcategory': 'office',
'sensible': 1.0, # 1 W/W sensible, scalable by power in cooling_load.py
'latent': 0.0 # Assume no latent gain for generic equipment
})
return pd.DataFrame(data)
def get_heat_gain(self, source: str, subcategory: Optional[str] = None) -> Tuple[float, float]:
"""
Get sensible and latent heat gain for an internal source.
Args:
source (str): Source type ('people', 'lighting', 'equipment').
subcategory (str, optional): Subcategory (e.g., 'Seated, resting' for people, 'LED' for lighting).
Returns:
Tuple[float, float]: Sensible and latent heat gain values (Watts).
Raises:
ValueError: If source or subcategory is invalid.
"""
try:
if source not in self.heat_gain['category'].values:
raise ValueError(f"Invalid source: {source}")
if subcategory:
if subcategory not in self.heat_gain[self.heat_gain['category'] == source]['subcategory'].values:
raise ValueError(f"Invalid subcategory for {source}: {subcategory}")
row = self.heat_gain[(self.heat_gain['category'] == source) & (self.heat_gain['subcategory'] == subcategory)]
else:
row = self.heat_gain[self.heat_gain['category'] == source]
if row.empty:
raise ValueError(f"No data found for source: {source}, subcategory: {subcategory}")
return float(row['sensible'].iloc[0]), float(row['latent'].iloc[0])
except Exception as e:
raise ValueError(f"Error in get_heat_gain: {str(e)}")
def interpolate_cltd(self, latitude: float, cltd_table_low: pd.DataFrame, cltd_table_high: pd.DataFrame, lat_low: float, lat_high: float) -> pd.DataFrame:
"""
Interpolate CLTD or SCL values between two latitudes.
Args:
latitude (float): Target latitude for interpolation.
cltd_table_low (pd.DataFrame): CLTD/SCL table for lower latitude.
cltd_table_high (pd.DataFrame): CLTD/SCL table for higher latitude.
lat_low (float): Lower latitude value.
lat_high (float): Higher latitude value.
Returns:
pd.DataFrame: Interpolated CLTD/SCL table.
"""
weight = (latitude - lat_low) / (lat_high - lat_low)
return (1 - weight) * cltd_table_low + weight * cltd_table_high
def _load_cltd_wall_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLTD tables for walls at 24°N, 32°N, 36°N, 44°N, 56°N (July), based on ASHRAE Handbook—Fundamentals (2017, Chapter 18, Table 7).
Returns: Dictionary of DataFrames with CLTD values for each wall group and latitude.
"""
hours = list(range(24))
# CLTD data for wall types mapped to groups A-H across latitudes
wall_data = {
"24N": {
"A": { # Type 1: Lightest construction
'North': [1, 0, -1, -2, -3, -2, 5, 13, 17, 18, 19, 22, 26, 28, 30, 32, 34, 34, 27, 17, 11, 7, 5, 3],
'Northeast': [1, 0, -1, -2, -3, 0, 17, 39, 51, 53, 48, 39, 32, 30, 30, 30, 30, 28, 24, 18, 13, 10, 7, 5],
'East': [1, 0, -1, -2, -3, 0, 18, 44, 59, 63, 59, 48, 36, 32, 31, 30, 32, 32, 29, 24, 19, 13, 10, 7],
'Southeast': [1, 0, -1, -2, -3, -2, 8, 25, 38, 44, 45, 42, 35, 32, 31, 30, 32, 32, 27, 24, 18, 13, 10, 7],
'South': [1, 0, -1, -2, -3, -3, -1, 3, 8, 12, 18, 24, 29, 31, 31, 30, 32, 32, 27, 23, 18, 13, 9, 7],
'Southwest': [1, 0, 1, 2, 3, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8],
'West': [2, 0, 2, 2, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8, 5],
'Northwest': [2, 0, 1, 2, 2, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8]
},
"B": { # Type 2
'North': [2, 1, 0, -1, -2, -1, 6, 14, 18, 19, 20, 23, 27, 29, 31, 33, 35, 35, 28, 18, 12, 8, 6, 4],
'Northeast': [2, 1, 0, -1, -2, 1, 18, 40, 52, 54, 49, 40, 33, 31, 31, 31, 31, 29, 25, 19, 14, 11, 8, 6],
'East': [2, 1, 0, -1, -2, 1, 19, 45, 60, 64, 60, 49, 37, 33, 32, 31, 33, 33, 30, 25, 20, 14, 11, 8],
'Southeast': [2, 1, 0, -1, -2, -1, 9, 26, 39, 45, 46, 43, 36, 33, 32, 31, 33, 33, 28, 25, 19, 14, 11, 8],
'South': [2, 1, 0, -1, -2, -2, 0, 4, 9, 13, 19, 25, 30, 32, 32, 31, 33, 33, 28, 24, 19, 14, 10, 8],
'Southwest': [2, 1, 2, 3, 4, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9],
'West': [3, 1, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9, 6],
'Northwest': [3, 1, 2, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9]
},
"C": { # Type 3
'North': [3, 2, 1, 0, -1, 0, 7, 15, 19, 20, 21, 24, 28, 30, 32, 34, 36, 36, 29, 19, 13, 9, 7, 5],
'Northeast': [3, 2, 1, 0, -1, 2, 19, 41, 53, 55, 50, 41, 34, 32, 32, 32, 32, 30, 26, 20, 15, 12, 9, 7],
'East': [3, 2, 1, 0, -1, 2, 20, 46, 61, 65, 61, 50, 38, 34, 33, 32, 34, 34, 31, 26, 21, 15, 12, 9],
'Southeast': [3, 2, 1, 0, -1, 0, 10, 27, 40, 46, 47, 44, 37, 34, 33, 32, 34, 34, 29, 26, 20, 15, 12, 9],
'South': [3, 2, 1, 0, -1, -1, 1, 5, 10, 14, 20, 26, 31, 33, 33, 32, 34, 34, 29, 25, 20, 15, 11, 9],
'Southwest': [3, 2, 3, 4, 5, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10],
'West': [4, 2, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10, 7],
'Northwest': [4, 2, 3, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10]
},
"D": { # Type 4
'North': [4, 3, 2, 1, 0, 1, 8, 16, 20, 21, 22, 25, 29, 31, 33, 35, 37, 37, 30, 20, 14, 10, 8, 6],
'Northeast': [4, 3, 2, 1, 0, 3, 20, 42, 54, 56, 51, 42, 35, 33, 33, 33, 33, 31, 27, 21, 16, 13, 10, 8],
'East': [4, 3, 2, 1, 0, 3, 21, 47, 62, 66, 62, 51, 39, 35, 34, 33, 35, 35, 32, 27, 22, 16, 13, 10],
'Southeast': [4, 3, 2, 1, 0, 1, 11, 28, 41, 47, 48, 45, 38, 35, 34, 33, 35, 35, 30, 27, 21, 16, 13, 10],
'South': [4, 3, 2, 1, 0, 0, 2, 6, 11, 15, 21, 27, 32, 34, 34, 33, 35, 35, 30, 26, 21, 16, 12, 10],
'Southwest': [4, 3, 4, 5, 6, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11],
'West': [5, 3, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11, 8],
'Northwest': [5, 3, 4, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11]
},
"E": { # Type 5
'North': [13, 11, 9, 7, 5, 3, 2, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 27, 25, 22, 20, 16],
'Northeast': [13, 11, 8, 7, 5, 3, 3, 6, 12, 20, 26, 31, 33, 33, 32, 32, 32, 33, 31, 29, 27, 24, 21, 18],
'East': [14, 11, 9, 7, 5, 4, 3, 6, 13, 22, 31, 36, 39, 39, 39, 39, 39, 31, 31, 29, 26, 22, 19, 18],
'Southeast': [13, 10, 8, 6, 5, 3, 2, 4, 8, 14, 20, 25, 28, 30, 30, 30, 30, 30, 28, 26, 24, 21, 18, 16],
'South': [11, 9, 7, 6, 4, 3, 2, 1, 1, 3, 5, 7, 11, 14, 16, 20, 22, 23, 23, 23, 20, 18, 16, 14],
'Southwest': [18, 15, 12, 9, 7, 5, 3, 3, 3, 4, 5, 8, 11, 14, 16, 20, 26, 32, 33, 31, 41, 40, 36, 31],
'West': [23, 19, 15, 12, 9, 7, 5, 4, 4, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 51, 41, 41, 41],
'Northwest': [21, 17, 14, 11, 8, 6, 4, 3, 3, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 41, 41, 41, 41]
},
"F": { # Type 6
'North': [10, 8, 6, 4, 2, 1, 1, 2, 4, 6, 9, 11, 13, 15, 18, 20, 22, 24, 26, 26, 24, 21, 19, 15],
'Northeast': [10, 8, 6, 4, 2, 2, 2, 5, 11, 19, 25, 30, 32, 32, 31, 31, 31, 32, 30, 28, 26, 23, 20, 17],
'East': [11, 8, 6, 4, 2, 3, 2, 5, 12, 21, 30, 35, 38, 38, 38, 38, 38, 30, 30, 28, 25, 21, 18, 17],
'Southeast': [10, 7, 5, 3, 2, 2, 1, 3, 7, 13, 19, 24, 27, 29, 29, 29, 29, 29, 27, 25, 23, 20, 17, 15],
'South': [8, 6, 4, 3, 1, 2, 1, 0, 0, 2, 4, 6, 10, 13, 15, 19, 21, 22, 22, 22, 19, 17, 15, 13],
'Southwest': [15, 12, 9, 6, 4, 3, 2, 2, 2, 3, 4, 7, 10, 13, 15, 19, 25, 31, 32, 30, 40, 39, 35, 30],
'West': [20, 16, 12, 9, 6, 4, 3, 3, 3, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 50, 40, 40, 40],
'Northwest': [18, 14, 11, 8, 5, 4, 3, 2, 2, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 40, 40, 40, 40]
},
"G": { # Type 7
'North': [7, 5, 3, 1, -1, 0, 0, 1, 3, 5, 8, 10, 12, 14, 17, 19, 21, 23, 25, 25, 23, 20, 18, 14],
'Northeast': [7, 5, 3, 1, -1, 1, 1, 4, 10, 18, 24, 29, 31, 31, 30, 30, 30, 31, 29, 27, 25, 22, 19, 16],
'East': [8, 5, 3, 1, -1, 2, 1, 4, 11, 20, 29, 34, 37, 37, 37, 37, 37, 29, 29, 27, 24, 20, 17, 16],
'Southeast': [7, 4, 2, 0, -1, 1, 0, 2, 6, 12, 18, 23, 26, 28, 28, 28, 28, 28, 26, 24, 22, 19, 16, 14],
'South': [5, 3, 1, 0, -2, 1, 0, -1, -1, 1, 3, 5, 9, 12, 14, 18, 20, 21, 21, 21, 18, 16, 14, 12],
'Southwest': [12, 9, 6, 3, 1, 2, 1, 1, 1, 2, 3, 6, 9, 12, 14, 18, 24, 30, 31, 29, 39, 38, 34, 29],
'West': [17, 13, 9, 6, 3, 2, 2, 2, 2, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 49, 39, 39, 39],
'Northwest': [15, 11, 8, 5, 2, 3, 2, 1, 1, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 39, 39, 39, 39]
},
"H": { # Type 8: Heaviest construction
'North': [4, 2, 0, -2, -4, -3, -2, -1, 1, 3, 6, 8, 10, 12, 15, 17, 19, 21, 23, 23, 21, 18, 16, 12],
'Northeast': [4, 2, 0, -2, -4, 0, 0, 3, 9, 17, 23, 28, 30, 30, 29, 29, 29, 30, 28, 26, 24, 21, 18, 15],
'East': [5, 2, 0, -2, -4, 1, 0, 3, 10, 19, 28, 33, 36, 36, 36, 36, 36, 28, 28, 26, 23, 19, 16, 15],
'Southeast': [4, 1, -1, -3, -4, 0, -1, 1, 5, 11, 17, 22, 25, 27, 27, 27, 27, 27, 25, 23, 21, 18, 15, 13],
'South': [2, 0, -2, -3, -5, -2, -1, -2, -2, 0, 2, 4, 8, 11, 13, 17, 19, 20, 20, 20, 17, 15, 13, 11],
'Southwest': [9, 6, 3, 0, -2, 1, 0, 0, 0, 1, 2, 5, 8, 11, 13, 17, 23, 29, 30, 28, 38, 37, 33, 28],
'West': [14, 10, 6, 3, 0, 0, 1, 1, 1, 1, 3, 5, 8, 11, 13, 17, 25, 34, 32, 28, 48, 38, 38, 38],
'Northwest': [12, 8, 5, 2, -1, 2, 1, 0, 0, 1, 3, 5, 8, 11, 13, 17, 25, 34, 32, 28, 38, 38, 38, 38]
}
},
"32N": {
"A": {
'North': [2, 1, 0, -1, -2, -1, 6, 14, 18, 19, 20, 23, 27, 29, 31, 33, 35, 35, 28, 18, 12, 8, 6, 4],
'Northeast': [2, 1, 0, -1, -2, 1, 18, 40, 52, 54, 49, 40, 33, 31, 31, 31, 31, 29, 25, 19, 14, 11, 8, 6],
'East': [2, 1, 0, -1, -2, 1, 19, 45, 60, 64, 60, 49, 37, 33, 32, 31, 33, 33, 30, 25, 20, 14, 11, 8],
'Southeast': [2, 1, 0, -1, -2, -1, 9, 26, 39, 45, 46, 43, 36, 33, 32, 31, 33, 33, 28, 25, 19, 14, 11, 8],
'South': [2, 1, 0, -1, -2, -2, 0, 4, 9, 13, 19, 25, 30, 32, 32, 31, 33, 33, 28, 24, 19, 14, 10, 8],
'Southwest': [2, 1, 2, 3, 4, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9],
'West': [3, 1, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9, 6],
'Northwest': [3, 1, 2, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9]
},
"B": {
'North': [3, 2, 1, 0, -1, 0, 7, 15, 19, 20, 21, 24, 28, 30, 32, 34, 36, 36, 29, 19, 13, 9, 7, 5],
'Northeast': [3, 2, 1, 0, -1, 2, 19, 41, 53, 55, 50, 41, 34, 32, 32, 32, 32, 30, 26, 20, 15, 12, 9, 7],
'East': [3, 2, 1, 0, -1, 2, 20, 46, 61, 65, 61, 50, 38, 34, 33, 32, 34, 34, 31, 26, 21, 15, 12, 9],
'Southeast': [3, 2, 1, 0, -1, 0, 10, 27, 40, 46, 47, 44, 37, 34, 33, 32, 34, 34, 29, 26, 20, 15, 12, 9],
'South': [3, 2, 1, 0, -1, -1, 1, 5, 10, 14, 20, 26, 31, 33, 33, 32, 34, 34, 29, 25, 20, 15, 11, 9],
'Southwest': [3, 2, 3, 4, 5, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10],
'West': [4, 2, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10, 7],
'Northwest': [4, 2, 3, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10]
},
"C": {
'North': [4, 3, 2, 1, 0, 1, 8, 16, 20, 21, 22, 25, 29, 31, 33, 35, 37, 37, 30, 20, 14, 10, 8, 6],
'Northeast': [4, 3, 2, 1, 0, 3, 20, 42, 54, 56, 51, 42, 35, 33, 33, 33, 33, 31, 27, 21, 16, 13, 10, 8],
'East': [4, 3, 2, 1, 0, 3, 21, 47, 62, 66, 62, 51, 39, 35, 34, 33, 35, 35, 32, 27, 22, 16, 13, 10],
'Southeast': [4, 3, 2, 1, 0, 1, 11, 28, 41, 47, 48, 45, 38, 35, 34, 33, 35, 35, 30, 27, 21, 16, 13, 10],
'South': [4, 3, 2, 1, 0, 0, 2, 6, 11, 15, 21, 27, 32, 34, 34, 33, 35, 35, 30, 26, 21, 16, 12, 10],
'Southwest': [4, 3, 4, 5, 6, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11],
'West': [5, 3, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11, 8],
'Northwest': [5, 3, 4, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11]
},
"D": {
'North': [5, 4, 3, 2, 1, 2, 9, 17, 21, 22, 23, 26, 30, 32, 34, 36, 38, 38, 31, 21, 15, 11, 9, 7],
'Northeast': [5, 4, 3, 2, 1, 4, 21, 43, 55, 57, 52, 43, 36, 34, 34, 34, 34, 32, 28, 22, 17, 14, 11, 9],
'East': [5, 4, 3, 2, 1, 4, 22, 48, 63, 67, 63, 52, 40, 36, 35, 34, 36, 36, 33, 28, 23, 17, 14, 11],
'Southeast': [5, 4, 3, 2, 1, 2, 12, 29, 42, 48, 49, 46, 39, 36, 35, 34, 36, 36, 31, 28, 22, 17, 14, 11],
'South': [5, 4, 3, 2, 1, 1, 3, 7, 12, 16, 22, 28, 33, 35, 35, 34, 36, 36, 31, 27, 22, 17, 13, 11],
'Southwest': [5, 4, 5, 6, 7, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12],
'West': [6, 4, 6, 6, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12, 9],
'Northwest': [6, 4, 5, 6, 6, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12]
},
"E": {
'North': [14, 12, 10, 8, 6, 4, 3, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24, 26, 28, 28, 26, 23, 21, 17],
'Northeast': [14, 12, 9, 8, 6, 4, 4, 7, 13, 21, 27, 32, 34, 34, 33, 33, 33, 34, 32, 30, 28, 25, 22, 19],
'East': [15, 12, 10, 8, 6, 5, 4, 7, 14, 23, 32, 37, 40, 40, 40, 40, 40, 32, 32, 30, 27, 23, 20, 19],
'Southeast': [14, 11, 9, 7, 6, 4, 3, 5, 9, 15, 21, 26, 29, 31, 31, 31, 31, 31, 29, 27, 25, 22, 19, 17],
'South': [12, 10, 8, 7, 5, 4, 3, 2, 2, 4, 6, 8, 12, 15, 17, 21, 23, 24, 24, 24, 21, 19, 17, 15],
'Southwest': [19, 16, 13, 10, 8, 6, 4, 4, 4, 5, 6, 9, 12, 15, 17, 21, 27, 33, 34, 32, 42, 41, 37, 32],
'West': [24, 20, 16, 13, 10, 8, 6, 5, 5, 5, 7, 9, 12, 15, 17, 21, 29, 38, 36, 32, 52, 42, 42, 42],
'Northwest': [22, 18, 15, 12, 9, 7, 5, 4, 4, 5, 7, 9, 12, 15, 17, 21, 29, 38, 36, 32, 42, 42, 42, 42]
},
"F": {
'North': [11, 9, 7, 5, 3, 2, 2, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 27, 25, 22, 20, 16],
'Northeast': [11, 9, 7, 5, 3, 3, 3, 6, 12, 20, 26, 31, 33, 33, 32, 32, 32, 33, 31, 29, 27, 24, 21, 18],
'East': [12, 9, 7, 5, 3, 4, 3, 6, 13, 22, 31, 36, 39, 39, 39, 39, 39, 31, 31, 29, 26, 22, 19, 18],
'Southeast': [11, 8, 6, 4, 3, 3, 2, 4, 8, 14, 20, 25, 28, 30, 30, 30, 30, 30, 28, 26, 24, 21, 18, 16],
'South': [9, 7, 5, 4, 2, 3, 2, 1, 1, 3, 5, 7, 11, 14, 16, 20, 22, 23, 23, 23, 20, 18, 16, 14],
'Southwest': [16, 13, 10, 7, 5, 4, 3, 3, 3, 4, 5, 8, 11, 14, 16, 20, 26, 32, 33, 31, 41, 40, 36, 31],
'West': [21, 17, 13, 10, 7, 5, 4, 4, 4, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 51, 41, 41, 41],
'Northwest': [19, 15, 12, 9, 6, 5, 4, 3, 3, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 41, 41, 41, 41]
},
"G": {
'North': [8, 6, 4, 2, 0, 1, 1, 2, 4, 6, 9, 11, 13, 15, 18, 20, 22, 24, 26, 26, 24, 21, 19, 15],
'Northeast': [8, 6, 4, 2, 0, 2, 2, 5, 11, 19, 25, 30, 32, 32, 31, 31, 31, 32, 30, 28, 26, 23, 20, 17],
'East': [9, 6, 4, 2, 0, 3, 2, 5, 12, 21, 30, 35, 38, 38, 38, 38, 38, 30, 30, 28, 25, 21, 18, 17],
'Southeast': [8, 5, 3, 1, 0, 2, 1, 3, 7, 13, 19, 24, 27, 29, 29, 29, 29, 29, 27, 25, 23, 20, 17, 15],
'South': [6, 4, 2, 1, -1, 2, 1, 0, 0, 2, 4, 6, 10, 13, 15, 19, 21, 22, 22, 22, 19, 17, 15, 13],
'Southeast': [13, 10, 7, 4, 2, 3, 2, 2, 2, 3, 4, 7, 10, 13, 15, 19, 25, 31, 32, 30, 40, 39, 35, 30],
'West': [18, 14, 10, 7, 4, 3, 3, 3, 3, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 50, 40, 40, 40],
'Northwest': [16, 12, 9, 6, 3, 4, 3, 2, 2, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 40, 40, 40, 40]
},
"H": {
'North': [5, 3, 1, -1, -3, -2, -1, 0, 2, 4, 7, 9, 11, 13, 16, 18, 20, 22, 24, 24, 22, 19, 17, 13],
'Northeast': [5, 3, 1, -1, -3, 1, 1, 4, 10, 18, 24, 29, 31, 31, 30, 30, 30, 31, 29, 27, 25, 22, 19, 16],
'East': [6, 3, 1, -1, -3, 2, 1, 4, 11, 20, 29, 34, 37, 37, 37, 37, 37, 29, 29, 27, 24, 20, 17, 16],
'Southeast': [5, 2, 0, -2, -3, 1, 0, 2, 6, 12, 18, 23, 26, 28, 28, 28, 28, 28, 26, 24, 22, 19, 16, 14],
'South': [3, 1, -1, -2, -4, -1, 0, -1, -1, 1, 3, 5, 9, 12, 14, 18, 20, 21, 21, 21, 18, 16, 14, 12],
'Southwest': [10, 7, 4, 1, -1, 2, 1, 1, 1, 2, 3, 6, 9, 12, 14, 18, 24, 30, 31, 29, 39, 38, 34, 29],
'West': [15, 11, 7, 4, 1, 1, 2, 2, 2, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 49, 39, 39, 39],
'Northwest': [13, 9, 6, 3, 0, 3, 2, 1, 1, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 39, 39, 39, 39]
}
},
"36N": {
"A": {
'North': [3, 2, 1, 0, -1, 0, 7, 15, 19, 20, 21, 24, 28, 30, 32, 34, 36, 36, 29, 19, 13, 9, 7, 5],
'Northeast': [3, 2, 1, 0, -1, 2, 19, 41, 53, 55, 50, 41, 34, 32, 32, 32, 32, 30, 26, 20, 15, 12, 9, 7],
'East': [3, 2, 1, 0, -1, 2, 20, 46, 61, 65, 61, 50, 38, 34, 33, 32, 34, 34, 31, 26, 21, 15, 12, 9],
'Southeast': [3, 2, 1, 0, -1, 0, 10, 27, 40, 46, 47, 44, 37, 34, 33, 32, 34, 34, 29, 26, 20, 15, 12, 9],
'South': [3, 2, 1, 0, -1, -1, 1, 5, 10, 14, 20, 26, 31, 33, 33, 32, 34, 34, 29, 25, 20, 15, 11, 9],
'Southwest': [3, 2, 3, 4, 5, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10],
'West': [4, 2, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10, 7],
'Northwest': [4, 2, 3, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10]
},
"B": {
'North': [4, 3, 2, 1, 0, 1, 8, 16, 20, 21, 22, 25, 29, 31, 33, 35, 37, 37, 30, 20, 14, 10, 8, 6],
'Northeast': [4, 3, 2, 1, 0, 3, 20, 42, 54, 56, 51, 42, 35, 33, 33, 33, 33, 31, 27, 21, 16, 13, 10, 8],
'East': [4, 3, 2, 1, 0, 3, 21, 47, 62, 66, 62, 51, 39, 35, 34, 33, 35, 35, 32, 27, 22, 16, 13, 10],
'Southeast': [4, 3, 2, 1, 0, 1, 11, 28, 41, 47, 48, 45, 38, 35, 34, 33, 35, 35, 30, 27, 21, 16, 13, 10],
'South': [4, 3, 2, 1, 0, 0, 2, 6, 11, 15, 21, 27, 32, 34, 34, 33, 35, 35, 30, 26, 21, 16, 12, 10],
'Southwest': [4, 3, 4, 5, 6, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11],
'West': [5, 3, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11, 8],
'Northwest': [5, 3, 4, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11]
},
"C": {
'North': [5, 4, 3, 2, 1, 2, 9, 17, 21, 22, 23, 26, 30, 32, 34, 36, 38, 38, 31, 21, 15, 11, 9, 7],
'Northeast': [5, 4, 3, 2, 1, 4, 21, 43, 55, 57, 52, 43, 36, 34, 34, 34, 34, 32, 28, 22, 17, 14, 11, 9],
'East': [5, 4, 3, 2, 1, 4, 22, 48, 63, 67, 63, 52, 40, 36, 35, 34, 36, 36, 33, 28, 23, 17, 14, 11],
'Southeast': [5, 4, 3, 2, 1, 2, 12, 29, 42, 48, 49, 46, 39, 36, 35, 34, 36, 36, 31, 28, 22, 17, 14, 11],
'South': [5, 4, 3, 2, 1, 1, 3, 7, 12, 16, 22, 28, 33, 35, 35, 34, 36, 36, 31, 27, 22, 17, 13, 11],
'Southwest': [5, 4, 5, 6, 7, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12],
'West': [6, 4, 6, 6, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12, 9],
'Northwest': [6, 4, 5, 6, 6, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12]
},
"D": {
'North': [6, 5, 4, 3, 2, 3, 10, 18, 22, 23, 24, 27, 31, 33, 35, 37, 39, 39, 32, 22, 16, 12, 10, 8],
'Northeast': [6, 5, 4, 3, 2, 5, 22, 44, 56, 58, 53, 44, 37, 35, 35, 35, 35, 33, 29, 23, 18, 15, 12, 10],
'East': [6, 5, 4, 3, 2, 5, 23, 49, 64, 68, 64, 53, 41, 37, 36, 35, 37, 37, 34, 29, 24, 18, 15, 12],
'Southeast': [6, 5, 4, 3, 2, 3, 13, 30, 43, 49, 50, 47, 40, 37, 36, 35, 37, 37, 32, 29, 23, 18, 15, 12],
'South': [6, 5, 4, 3, 2, 2, 4, 8, 13, 17, 23, 29, 34, 36, 36, 35, 37, 37, 32, 28, 23, 18, 14, 12],
'Southwest': [6, 5, 6, 7, 8, 8, 6, 8, 13, 18, 22, 27, 32, 47, 64, 78, 35, 37, 32, 28, 23, 25, 17, 13],
'West': [7, 5, 7, 7, 8, 6, 8, 13, 18, 22, 27, 32, 47, 64, 78, 35, 37, 32, 28, 23, 25, 17, 13, 10],
'Northwest': [7, 5, 6, 7, 7, 8, 6, 8, 13, 18, 22, 27, 32, 47, 64, 78, 35, 37, 32, 28, 23, 25, 17, 13]
},
"E": {
'North': [15, 13, 11, 9, 7, 5, 4, 5, 7, 9, 12, 14, 16, 18, 21, 23, 25, 27, 29, 29, 27, 24, 22, 18],
'Northeast': [15, 13, 10, 9, 7, 5, 5, 8, 14, 22, 28, 33, 35, 35, 34, 34, 34, 35, 33, 31, 29, 26, 23, 20],
'East': [16, 13, 11, 9, 7, 6, 5, 8, 15, 24, 33, 38, 41, 41, 41, 41, 41, 33, 33, 31, 28, 24, 21, 20],
'Southeast': [15, 12, 10, 8, 7, 5, 4, 6, 10, 16, 22, 27, 30, 32, 32, 32, 32, 32, 30, 28, 26, 23, 20, 18],
'South': [13, 11, 9, 8, 6, 5, 4, 3, 3, 5, 7, 9, 13, 16, 18, 22, 24, 25, 25, 25, 22, 20, 18, 16],
'Southwest': [20, 17, 14, 11, 9, 7, 5, 5, 5, 6, 7, 10, 13, 16, 18, 22, 28, 34, 35, 33, 43, 42, 38, 33],
'West': [25, 21, 17, 14, 11, 9, 7, 6, 6, 6, 8, 10, 13, 16, 18, 22, 30, 39, 37, 33, 53, 43, 43, 43],
'Northwest': [23, 19, 16, 13, 10, 8, 6, 5, 5, 6, 8, 10, 13, 16, 18, 22, 30, 39, 37, 33, 43, 43, 43, 43]
},
"F": {
'North': [12, 10, 8, 6, 4, 3, 3, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24, 26, 28, 28, 26, 23, 21, 17],
'Northeast': [12, 10, 8, 6, 4, 4, 4, 7, 13, 21, 27, 32, 34, 34, 33, 33, 33, 34, 32, 30, 28, 25, 22, 19],
'East': [13, 10, 8, 6, 4, 5, 4, 7, 14, 23, 32, 37, 40, 40, 40, 40, 40, 32, 32, 30, 27, 23, 20, 19],
'Southeast': [12, 9, 7, 5, 4, 4, 3, 5, 9, 15, 21, 26, 29, 31, 31, 31, 31, 31, 29, 27, 25, 22, 19, 17],
'South': [10, 8, 6, 5, 3, 4, 3, 2, 2, 4, 6, 8, 12, 15, 17, 21, 23, 24, 24, 24, 21, 19, 17, 15],
'Southwest': [17, 14, 11, 8, 6, 5, 4, 4, 4, 5, 6, 9, 12, 15, 17, 21, 27, 33, 34, 32, 42, 41, 37, 32],
'West': [22, 18, 14, 11, 8, 6, 5, 5, 5, 5, 7, 9, 12, 15, 17, 21, 29, 38, 36, 32, 52, 42, 42, 42],
'Northwest': [20, 16, 13, 10, 7, 6, 5, 4, 4, 5, 7, 9, 12, 15, 17, 21, 29, 38, 36, 32, 42, 42, 42, 42]
},
"G": {
'North': [9, 7, 5, 3, 1, 2, 2, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 27, 25, 22, 20, 16],
'Northeast': [9, 7, 5, 3, 1, 3, 3, 6, 12, 20, 26, 31, 33, 33, 32, 32, 32, 33, 31, 29, 27, 24, 21, 18],
'East': [10, 7, 5, 3, 1, 4, 3, 6, 13, 22, 31, 36, 39, 39, 39, 39, 39, 31, 31, 29, 26, 22, 19, 18],
'Southeast': [9, 6, 4, 2, 1, 3, 2, 4, 8, 14, 20, 25, 28, 30, 30, 30, 30, 30, 28, 26, 24, 21, 18, 16],
'South': [7, 5, 3, 2, 0, 3, 2, 1, 1, 3, 5, 7, 11, 14, 16, 20, 22, 23, 23, 23, 20, 18, 16, 14],
'Southwest': [14, 11, 8, 5, 3, 4, 3, 3, 3, 4, 5, 8, 11, 14, 16, 20, 26, 32, 33, 31, 41, 40, 36, 31],
'West': [19, 15, 11, 8, 5, 4, 4, 4, 4, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 51, 41, 41, 41],
'Northwest': [17, 13, 10, 7, 4, 5, 4, 3, 3, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 41, 41, 41, 41]
},
"H": {
'North': [6, 4, 2, 0, -2, -1, 0, 1, 3, 5, 8, 10, 12, 14, 17, 19, 21, 23, 25, 25, 23, 20, 18, 14],
'Northeast': [6, 4, 2, 0, -2, 2, 2, 5, 11, 19, 25, 30, 32, 32, 31, 31, 31, 32, 30, 28, 26, 23, 20, 17],
'East': [7, 4, 2, 0, -2, 3, 2, 5, 12, 21, 30, 35, 38, 38, 38, 38, 38, 30, 30, 28, 25, 21, 18, 17],
'Southeast': [6, 3, 1, -1, -2, 2, 1, 3, 7, 13, 19, 24, 27, 29, 29, 29, 29, 29, 27, 25, 23, 20, 17, 15],
'South': [4, 2, 0, -1, -3, 0, 1, 0, 0, 2, 4, 6, 10, 13, 15, 19, 21, 22, 22, 22, 19, 17, 15, 13],
'Southwest': [11, 8, 5, 2, 0, 3, 2, 2, 2, 3, 4, 7, 10, 13, 15, 19, 25, 31, 32, 30, 40, 39, 35, 30],
'West': [16, 12, 8, 5, 2, 2, 3, 3, 3, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 50, 40, 40, 40],
'Northwest': [14, 10, 7, 4, 1, 4, 3, 2, 2, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 40, 40, 40, 40]
}
},
"44N": {
"A": {
'North': [5, 4, 3, 2, 1, 2, 9, 17, 21, 22, 23, 26, 30, 32, 34, 36, 38, 38, 31, 21, 15, 11, 9, 7],
'Northeast': [5, 4, 3, 2, 1, 4, 21, 43, 55, 57, 52, 43, 36, 34, 34, 34, 34, 32, 28, 22, 17, 14, 11, 9],
'East': [5, 4, 3, 2, 1, 4, 22, 48, 63, 67, 63, 52, 40, 36, 35, 34, 36, 36, 33, 28, 23, 17, 14, 11],
'Southeast': [5, 4, 3, 2, 1, 2, 12, 29, 42, 48, 49, 46, 39, 36, 35, 34, 36, 36, 31, 28, 22, 17, 14, 11],
'South': [5, 4, 3, 2, 1, 1, 3, 7, 12, 16, 22, 28, 33, 35, 35, 34, 36, 36, 31, 27, 22, 17, 13, 11],
'Southwest': [5, 4, 5, 6, 7, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12],
'West': [6, 4, 6, 6, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12, 9],
'Northwest': [6, 4, 5, 6, 6, 7, 5, 7, 12, 17, 21, 26, 31, 46, 63, 77, 34, 36, 31, 27, 22, 24, 16, 12]
},
"B": {
'North': [6, 5, 4, 3, 2, 3, 10, 18, 22, 23, 24, 27, 31, 33, 35, 37, 39, 39, 32, 22, 16, 12, 10, 8],
'Northeast': [6, 5, 4, 3, 2, 5, 22, 44, 56, 58, 53, 44, 37, 35, 35, 35, 35, 33, 29, 23, 18, 15, 12, 10],
'East': [6, 5, 4, 3, 2, 5, 23, 49, 64, 68, 64, 53, 41, 37, 36, 35, 37, 37, 34, 29, 24, 18, 15, 12],
'Southeast': [6, 5, 4, 3, 2, 3, 13, 30, 43, 49, 50, 47, 40, 37, 36, 35, 37, 37, 32, 29, 23, 18, 15, 12],
'South': [6, 5, 4, 3, 2, 2, 4, 8, 13, 17, 23, 29, 34, 36, 36, 35, 37, 37, 32, 28, 23, 18, 14, 12],
'Southwest': [6, 5, 6, 7, 8, 8, 6, 8, 13, 18, 22, 27, 32, 47, 64, 78, 35, 37, 32, 28, 23, 25, 17, 13],
'West': [7, 5, 7, 7, 8, 6, 8, 13, 18, 22, 27, 32, 47, 64, 78, 35, 37, 32, 28, 23, 25, 17, 13, 10],
'Northwest': [7, 5, 6, 7, 7, 8, 6, 8, 13, 18, 22, 27, 32, 47, 64, 78, 35, 37, 32, 28, 23, 25, 17, 13]
},
"C": {
'North': [7, 6, 5, 4, 3, 4, 11, 19, 23, 24, 25, 28, 32, 34, 36, 38, 40, 40, 33, 23, 17, 13, 11, 9],
'Northeast': [7, 6, 5, 4, 3, 6, 23, 45, 57, 59, 54, 45, 38, 36, 36, 36, 36, 34, 30, 24, 19, 16, 13, 11],
'East': [7, 6, 5, 4, 3, 6, 24, 50, 65, 69, 65, 54, 42, 38, 37, 36, 38, 38, 35, 30, 25, 19, 16, 13],
'Southeast': [7, 6, 5, 4, 3, 4, 14, 31, 44, 50, 51, 48, 41, 38, 37, 36, 38, 38, 33, 30, 24, 19, 16, 13],
'South': [7, 6, 5, 4, 3, 3, 5, 9, 14, 18, 24, 30, 35, 37, 37, 36, 38, 38, 33, 29, 24, 19, 15, 13],
'Southwest': [7, 6, 7, 8, 9, 9, 7, 9, 14, 19, 23, 28, 33, 48, 65, 79, 36, 38, 33, 29, 24, 26, 18, 14],
'West': [8, 6, 8, 8, 9, 7, 9, 14, 19, 23, 28, 33, 48, 65, 79, 36, 38, 33, 29, 24, 26, 18, 14, 11],
'Northwest': [8, 6, 7, 8, 8, 9, 7, 9, 14, 19, 23, 28, 33, 48, 65, 79, 36, 38, 33, 29, 24, 26, 18, 14]
},
"D": {
'North': [8, 7, 6, 5, 4, 5, 12, 20, 24, 25, 26, 29, 33, 35, 37, 39, 41, 41, 34, 24, 18, 14, 12, 10],
'Northeast': [8, 7, 6, 5, 4, 7, 24, 46, 58, 60, 55, 46, 39, 37, 37, 37, 37, 35, 31, 25, 20, 17, 14, 12],
'East': [8, 7, 6, 5, 4, 7, 25, 51, 66, 70, 66, 55, 43, 39, 38, 37, 39, 39, 36, 31, 26, 20, 17, 14],
'Southeast': [8, 7, 6, 5, 4, 5, 15, 32, 45, 51, 52, 49, 42, 39, 38, 37, 39, 39, 34, 31, 25, 20, 17, 14],
'South': [8, 7, 6, 5, 4, 4, 6, 10, 15, 19, 25, 31, 36, 38, 38, 37, 39, 39, 34, 30, 25, 20, 16, 14],
'Southwest': [8, 7, 8, 9, 10, 10, 8, 10, 15, 20, 24, 29, 34, 49, 66, 80, 37, 39, 34, 30, 25, 27, 19, 15],
'West': [9, 7, 9, 9, 10, 8, 10, 15, 20, 24, 29, 34, 49, 66, 80, 37, 39, 34, 30, 25, 27, 19, 15, 12],
'Northwest': [9, 7, 8, 9, 9, 10, 8, 10, 15, 20, 24, 29, 34, 49, 66, 80, 37, 39, 34, 30, 25, 27, 19, 15]
},
"E": {
'North': [17, 15, 13, 11, 9, 7, 6, 7, 9, 11, 14, 16, 18, 20, 23, 25, 27, 29, 31, 31, 29, 26, 24, 20],
'Northeast': [17, 15, 12, 11, 9, 7, 7, 10, 16, 24, 30, 35, 37, 37, 36, 36, 36, 37, 35, 33, 31, 28, 25, 22],
'East': [18, 15, 13, 11, 9, 8, 7, 10, 17, 26, 35, 40, 43, 43, 43, 43, 43, 35, 35, 33, 30, 26, 23, 22],
'Southeast': [17, 14, 12, 10, 9, 7, 6, 8, 12, 18, 24, 29, 32, 34, 34, 34, 34, 34, 32, 30, 28, 25, 22, 20],
'South': [15, 13, 11, 10, 8, 7, 6, 5, 5, 7, 9, 11, 15, 18, 20, 24, 26, 27, 27, 27, 24, 22, 20, 18],
'Southwest': [22, 19, 16, 13, 11, 9, 7, 7, 7, 8, 9, 12, 15, 18, 20, 24, 30, 36, 37, 35, 45, 44, 40, 35],
'West': [27, 23, 19, 16, 13, 11, 9, 8, 8, 8, 10, 12, 15, 18, 20, 24, 32, 41, 39, 35, 55, 45, 45, 45],
'Northwest': [25, 21, 18, 15, 12, 10, 8, 7, 7, 8, 10, 12, 15, 18, 20, 24, 32, 41, 39, 35, 45, 45, 45, 45]
},
"F": {
'North': [14, 12, 10, 8, 6, 5, 5, 6, 8, 10, 13, 15, 17, 19, 22, 24, 26, 28, 30, 30, 28, 25, 23, 19],
'Northeast': [14, 12, 10, 8, 6, 6, 6, 9, 15, 23, 29, 34, 36, 36, 35, 35, 35, 36, 34, 32, 30, 27, 24, 21],
'East': [15, 12, 10, 8, 6, 7, 6, 9, 16, 25, 34, 39, 42, 42, 42, 42, 42, 34, 34, 32, 29, 25, 22, 21],
'Southeast': [14, 11, 9, 7, 6, 6, 5, 7, 11, 17, 23, 28, 31, 33, 33, 33, 33, 33, 31, 29, 27, 24, 21, 19],
'South': [12, 10, 8, 7, 5, 6, 5, 4, 4, 6, 8, 10, 14, 17, 19, 23, 25, 26, 26, 26, 23, 21, 19, 17],
'Southwest': [19, 16, 13, 10, 8, 7, 6, 6, 6, 7, 8, 11, 14, 17, 19, 23, 29, 35, 36, 34, 44, 43, 39, 34],
'West': [24, 20, 16, 13, 10, 8, 7, 7, 7, 7, 9, 11, 14, 17, 19, 23, 31, 40, 38, 34, 54, 44, 44, 44],
'Northwest': [22, 18, 15, 12, 9, 8, 7, 6, 6, 7, 9, 11, 14, 17, 19, 23, 31, 40, 38, 34, 44, 44, 44, 44]
},
"G": {
'North': [11, 9, 7, 5, 3, 4, 4, 5, 7, 9, 12, 14, 16, 18, 21, 23, 25, 27, 29, 29, 27, 24, 22, 18],
'Northeast': [11, 9, 7, 5, 3, 5, 5, 8, 14, 22, 28, 33, 35, 35, 34, 34, 34, 35, 33, 31, 29, 26, 23, 20],
'East': [12, 9, 7, 5, 3, 6, 5, 8, 15, 24, 33, 38, 41, 41, 41, 41, 41, 33, 33, 31, 28, 24, 21, 20],
'Southeast': [11, 8, 6, 4, 3, 5, 4, 6, 10, 16, 22, 27, 30, 32, 32, 32, 32, 32, 30, 28, 26, 23, 20, 18],
'South': [9, 7, 5, 4, 2, 5, 4, 3, 3, 5, 7, 9, 13, 16, 18, 22, 24, 25, 25, 25, 22, 20, 18, 16],
'Southwest': [16, 13, 10, 7, 5, 6, 5, 5, 5, 6, 7, 10, 13, 16, 18, 22, 28, 34, 35, 33, 43, 42, 38, 33],
'West': [21, 17, 13, 10, 7, 6, 6, 6, 6, 6, 8, 10, 13, 16, 18, 22, 30, 39, 37, 33, 53, 43, 43, 43],
'Northwest': [19, 15, 12, 9, 6, 7, 6, 5, 5, 6, 8, 10, 13, 16, 18, 22, 30, 39, 37, 33, 43, 43, 43, 43]
},
"H": {
'North': [8, 6, 4, 2, 0, 3, 3, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24, 26, 28, 28, 26, 23, 21, 17],
'Northeast': [8, 6, 4, 2, 0, 4, 4, 7, 13, 21, 27, 32, 34, 34, 33, 33, 33, 34, 32, 30, 28, 25, 22, 19],
'East': [9, 6, 4, 2, 0, 5, 4, 7, 14, 23, 32, 37, 40, 40, 40, 40, 40, 32, 32, 30, 27, 23, 20, 19],
'Southeast': [8, 5, 3, 1, 0, 4, 3, 5, 9, 15, 21, 26, 29, 31, 31, 31, 31, 31, 29, 27, 25, 22, 19, 17],
'South': [6, 4, 2, 1, -1, 2, 3, 2, 2, 4, 6, 8, 12, 15, 17, 21, 23, 24, 24, 24, 21, 19, 17, 15],
'Southwest': [13, 10, 7, 4, 2, 5, 4, 4, 4, 5, 6, 9, 12, 15, 17, 21, 27, 33, 34, 32, 42, 41, 37, 32],
'West': [18, 14, 10, 7, 4, 4, 5, 5, 5, 5, 7, 9, 12, 15, 17, 21, 29, 38, 36, 32, 52, 42, 42, 42],
'Northwest': [16, 12, 9, 6, 3, 6, 5, 4, 4, 5, 7, 9, 12, 15, 17, 21, 29, 38, 36, 32, 42, 42, 42, 42]
}
},
"56N": {
"A": {
'North': [7, 6, 5, 4, 3, 4, 11, 19, 23, 24, 25, 28, 32, 34, 36, 38, 40, 40, 33, 23, 17, 13, 11, 9],
'Northeast': [7, 6, 5, 4, 3, 6, 23, 45, 57, 59, 54, 45, 38, 36, 36, 36, 36, 34, 30, 24, 19, 16, 13, 11],
'East': [7, 6, 5, 4, 3, 6, 24, 50, 65, 69, 65, 54, 42, 38, 37, 36, 38, 38, 35, 30, 25, 19, 16, 13],
'Southeast': [7, 6, 5, 4, 3, 4, 14, 31, 44, 50, 51, 48, 41, 38, 37, 36, 38, 38, 33, 30, 24, 19, 16, 13],
'South': [7, 6, 5, 4, 3, 3, 5, 9, 14, 18, 24, 30, 35, 37, 37, 36, 38, 38, 33, 29, 24, 19, 15, 13],
'Southwest': [7, 6, 7, 8, 9, 9, 7, 9, 14, 19, 23, 28, 33, 48, 65, 79, 36, 38, 33, 29, 24, 26, 18, 14],
'West': [8, 6, 8, 8, 9, 7, 9, 14, 19, 23, 28, 33, 48, 65, 79, 36, 38, 33, 29, 24, 26, 18, 14, 11],
'Northwest': [8, 6, 7, 8, 8, 9, 7, 9, 14, 19, 23, 28, 33, 48, 65, 79, 36, 38, 33, 29, 24, 26, 18, 14]
},
"B": {
'North': [8, 7, 6, 5, 4, 5, 12, 20, 24, 25, 26, 29, 33, 35, 37, 39, 41, 41, 34, 24, 18, 14, 12, 10],
'Northeast': [8, 7, 6, 5, 4, 7, 24, 46, 58, 60, 55, 46, 39, 37, 37, 37, 37, 35, 31, 25, 20, 17, 14, 12],
'East': [8, 7, 6, 5, 4, 7, 25, 51, 66, 70, 66, 55, 43, 39, 38, 37, 39, 39, 36, 31, 26, 20, 17, 14],
'Southeast': [8, 7, 6, 5, 4, 5, 15, 32, 45, 51, 52, 49, 42, 39, 38, 37, 39, 39, 34, 31, 25, 20, 17, 14],
'South': [8, 7, 6, 5, 4, 4, 6, 10, 15, 19, 25, 31, 36, 38, 38, 37, 39, 39, 34, 30, 25, 20, 16, 14],
'Southwest': [8, 7, 8, 9, 10, 10, 8, 10, 15, 20, 24, 29, 34, 49, 66, 80, 37, 39, 34, 30, 25, 27, 19, 15],
'West': [9, 7, 9, 9, 10, 8, 10, 15, 20, 24, 29, 34, 49, 66, 80, 37, 39, 34, 30, 25, 27, 19, 15, 12],
'Northwest': [9, 7, 8, 9, 9, 10, 8, 10, 15, 20, 24, 29, 34, 49, 66, 80, 37, 39, 34, 30, 25, 27, 19, 15]
},
"C": {
'North': [9, 8, 7, 6, 5, 6, 13, 21, 25, 26, 27, 30, 34, 36, 38, 40, 42, 42, 35, 25, 19, 15, 13, 11],
'Northeast': [9, 8, 7, 6, 5, 8, 25, 47, 59, 61, 56, 47, 40, 38, 38, 38, 38, 36, 32, 26, 21, 18, 15, 13],
'East': [9, 8, 7, 6, 5, 8, 26, 52, 67, 71, 67, 56, 44, 40, 39, 38, 40, 40, 37, 32, 27, 21, 18, 15],
'Southeast': [9, 8, 7, 6, 5, 6, 16, 33, 46, 52, 53, 50, 43, 40, 39, 38, 40, 40, 35, 32, 26, 21, 18, 15],
'South': [9, 8, 7, 6, 5, 5, 7, 11, 16, 20, 26, 32, 37, 39, 39, 38, 40, 40, 35, 31, 26, 21, 17, 15],
'Southwest': [9, 8, 9, 10, 11, 11, 9, 11, 16, 21, 25, 30, 35, 50, 67, 81, 38, 40, 35, 31, 26, 28, 20, 16],
'West': [10, 8, 10, 10, 11, 9, 11, 16, 21, 25, 30, 35, 50, 67, 81, 38, 40, 35, 31, 26, 28, 20, 16, 13],
'Northwest': [10, 8, 9, 10, 10, 11, 9, 11, 16, 21, 25, 30, 35, 50, 67, 81, 38, 40, 35, 31, 26, 28, 20, 16]
},
"D": {
'North': [10, 9, 8, 7, 6, 7, 14, 22, 26, 27, 28, 31, 35, 37, 39, 41, 43, 43, 36, 26, 20, 16, 14, 12],
'Northeast': [10, 9, 8, 7, 6, 9, 26, 48, 60, 62, 57, 48, 41, 39, 39, 39, 39, 37, 33, 27, 22, 19, 16, 14],
'East': [10, 9, 8, 7, 6, 9, 27, 53, 68, 72, 68, 57, 45, 41, 40, 39, 41, 41, 38, 33, 28, 22, 19, 16],
'Southeast': [10, 9, 8, 7, 6, 7, 17, 34, 47, 53, 54, 51, 44, 41, 40, 39, 41, 41, 36, 33, 27, 22, 19, 16],
'South': [10, 9, 8, 7, 6, 6, 8, 12, 17, 21, 27, 33, 38, 40, 40, 39, 41, 41, 36, 32, 27, 22, 18, 16],
'Southwest': [10, 9, 10, 11, 12, 12, 10, 12, 17, 22, 26, 31, 36, 51, 68, 82, 39, 41, 36, 32, 27, 29, 21, 17],
'West': [11, 9, 11, 11, 12, 10, 12, 17, 22, 26, 31, 36, 51, 68, 82, 39, 41, 36, 32, 27, 29, 21, 17, 14],
'Northwest': [11, 9, 10, 11, 11, 12, 10, 12, 17, 22, 26, 31, 36, 51, 68, 82, 39, 41, 36, 32, 27, 29, 21, 17]
},
"E": {
'North': [19, 17, 15, 13, 11, 9, 8, 9, 11, 13, 16, 18, 20, 22, 25, 27, 29, 31, 33, 33, 31, 28, 26, 22],
'Northeast': [19, 17, 14, 13, 11, 9, 9, 12, 18, 26, 32, 37, 39, 39, 38, 38, 38, 39, 37, 35, 33, 30, 27, 24],
'East': [20, 17, 15, 13, 11, 10, 9, 12, 19, 28, 37, 42, 45, 45, 45, 45, 45, 37, 37, 35, 32, 28, 25, 24],
'Southeast': [19, 16, 14, 12, 11, 9, 8, 10, 14, 20, 26, 31, 34, 36, 36, 36, 36, 36, 34, 32, 30, 27, 24, 22],
'South': [17, 15, 13, 12, 10, 9, 8, 7, 7, 9, 11, 13, 17, 20, 22, 26, 28, 29, 29, 29, 26, 24, 22, 20],
'Southwest': [24, 21, 18, 15, 13, 11, 9, 9, 9, 10, 11, 14, 17, 20, 22, 26, 32, 38, 39, 37, 47, 46, 42, 37],
'West': [29, 25, 21, 18, 15, 13, 11, 10, 10, 10, 12, 14, 17, 20, 22, 26, 34, 43, 41, 37, 57, 47, 47, 47],
'Northwest': [27, 23, 20, 17, 14, 12, 10, 9, 9, 10, 12, 14, 17, 20, 22, 26, 34, 43, 41, 37, 47, 47, 47, 47]
},
"F": {
'North': [16, 14, 12, 10, 8, 7, 7, 8, 10, 12, 15, 17, 19, 21, 24, 26, 28, 30, 32, 32, 30, 27, 25, 21],
'Northeast': [16, 14, 12, 10, 8, 8, 8, 11, 17, 25, 31, 36, 38, 38, 37, 37, 37, 38, 36, 34, 32, 29, 26, 23],
'East': [17, 14, 12, 10, 8, 9, 8, 11, 18, 27, 36, 41, 44, 44, 44, 44, 44, 36, 36, 34, 31, 27, 24, 23],
'Southeast': [16, 13, 11, 9, 8, 8, 7, 9, 13, 19, 25, 30, 33, 35, 35, 35, 35, 35, 33, 31, 29, 26, 23, 21],
'South': [14, 12, 10, 9, 7, 8, 7, 6, 6, 8, 10, 12, 16, 19, 21, 25, 27, 28, 28, 28, 25, 23, 21, 19],
'Southwest': [21, 18, 15, 12, 10, 9, 8, 8, 8, 9, 10, 13, 16, 19, 21, 25, 31, 37, 38, 36, 46, 45, 41, 36],
'West': [26, 22, 18, 15, 12, 10, 9, 9, 9, 9, 11, 13, 16, 19, 21, 25, 33, 42, 40, 36, 56, 46, 46, 46],
'Northwest': [24, 20, 17, 14, 11, 10, 9, 8, 8, 9, 11, 13, 16, 19, 21, 25, 33, 42, 40, 36, 46, 46, 46, 46]
},
"G": {
'North': [13, 11, 9, 7, 5, 6, 6, 7, 9, 11, 14, 16, 18, 20, 23, 25, 27, 29, 31, 31, 29, 26, 24, 20],
'Northeast': [13, 11, 9, 7, 5, 7, 7, 10, 16, 24, 30, 35, 37, 37, 36, 36, 36, 37, 35, 33, 31, 28, 25, 22],
'East': [14, 11, 9, 7, 5, 8, 7, 10, 17, 26, 35, 40, 43, 43, 43, 43, 43, 35, 35, 33, 30, 26, 23, 22],
'Southeast': [13, 10, 8, 6, 5, 7, 6, 8, 12, 18, 24, 29, 32, 34, 34, 34, 34, 34, 32, 30, 28, 25, 22, 20],
'South': [11, 9, 7, 6, 4, 7, 6, 5, 5, 7, 9, 11, 15, 18, 20, 24, 26, 27, 27, 27, 24, 22, 20, 18],
'Southwest': [18, 15, 12, 9, 7, 8, 7, 7, 7, 8, 9, 12, 15, 18, 20, 24, 30, 36, 37, 35, 45, 44, 40, 35],
'West': [23, 19, 15, 12, 9, 8, 8, 8, 8, 8, 10, 12, 15, 18, 20, 24, 32, 41, 39, 35, 55, 45, 45, 45],
'Northwest': [21, 17, 14, 11, 8, 9, 8, 7, 7, 8, 10, 12, 15, 18, 20, 24, 32, 41, 39, 35, 45, 45, 45, 45]
},
"H": {
'North': [10, 8, 6, 4, 2, 5, 5, 6, 8, 10, 13, 15, 17, 19, 22, 24, 26, 28, 30, 30, 28, 25, 23, 19],
'Northeast': [10, 8, 6, 4, 2, 6, 6, 9, 15, 23, 29, 34, 36, 36, 35, 35, 35, 36, 34, 32, 30, 27, 24, 21],
'East': [11, 8, 6, 4, 2, 7, 6, 9, 16, 25, 34, 39, 42, 42, 42, 42, 42, 34, 34, 32, 29, 25, 22, 21],
'Southeast': [10, 7, 5, 3, 2, 6, 5, 7, 11, 17, 23, 28, 31, 33, 33, 33, 33, 33, 31, 29, 27, 24, 21, 19],
'South': [8, 6, 4, 3, 1, 4, 5, 4, 4, 6, 8, 10, 14, 17, 19, 23, 25, 26, 26, 26, 23, 21, 19, 17],
'Southwest': [15, 12, 9, 6, 4, 7, 6, 6, 6, 7, 8, 11, 14, 17, 19, 23, 29, 35, 36, 34, 44, 43, 39, 34],
'West': [20, 16, 12, 9, 6, 6, 7, 7, 7, 7, 9, 11, 14, 17, 19, 23, 31, 40, 38, 34, 54, 44, 44, 44],
'Northwest': [18, 14, 11, 8, 5, 8, 7, 6, 6, 7, 9, 11, 14, 17, 19, 23, 31, 40, 38, 34, 44, 44, 44, 44]
}
}
}
# Generate DataFrames for each group and latitude
return {f"{group}_{lat}": pd.DataFrame(data, index=hours) for lat, groups in wall_data.items() for group, data in groups.items()}
def _load_cltd_roof_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLTD tables for roofs at 24°N, 32°N, 36°N, 44°N, 56°N (July), based on ASHRAE Handbook—Fundamentals (2017, Chapter 18, Table 7).
Returns: Dictionary of DataFrames with CLTD values for each roof group and latitude.
"""
hours = list(range(24))
# CLTD data for roof types mapped to groups A-G
roof_data = {
"24N": {
"A": {
'Horizontal': [12, 8, 5, 2, 0, -1, 0, 3, 8, 14, 20, 26, 31, 35, 38, 39, 39, 37, 34, 30, 26, 22, 18, 15]
},
"B": {
'Horizontal': [14, 10, 7, 4, 2, 1, 2, 5, 10, 16, 22, 28, 33, 37, 40, 41, 41, 39, 36, 32, 28, 24, 20, 17]
},
"C": {
'Horizontal': [16, 12, 9, 6, 4, 3, 4, 7, 12, 18, 24, 30, 35, 39, 42, 43, 43, 41, 38, 34, 30, 26, 22, 19]
},
"D": {
'Horizontal': [18, 14, 11, 8, 6, 5, 6, 9, 14, 20, 26, 32, 37, 41, 44, 45, 45, 43, 40, 36, 32, 28, 24, 21]
},
"E": {
'Horizontal': [20, 16, 13, 10, 8, 7, 8, 11, 16, 22, 28, 34, 39, 43, 46, 47, 47, 45, 42, 38, 34, 30, 26, 23]
},
"F": {
'Horizontal': [22, 18, 15, 12, 10, 9, 10, 13, 18, 24, 30, 36, 41, 45, 48, 49, 49, 47, 44, 40, 36, 32, 28, 25]
},
"G": {
'Horizontal': [24, 20, 17, 14, 12, 11, 12, 15, 20, 26, 32, 38, 43, 47, 50, 51, 51, 49, 46, 42, 38, 34, 30, 27]
}
},
"32N": {
"A": {
'Horizontal': [14, 10, 7, 4, 2, 1, 2, 5, 10, 16, 22, 28, 33, 37, 40, 41, 41, 39, 36, 32, 28, 24, 20, 17]
},
"B": {
'Horizontal': [16, 12, 9, 6, 4, 3, 4, 7, 12, 18, 24, 30, 35, 39, 42, 43, 43, 41, 38, 34, 30, 26, 22, 19]
},
"C": {
'Horizontal': [18, 14, 11, 8, 6, 5, 6, 9, 14, 20, 26, 32, 37, 41, 44, 45, 45, 43, 40, 36, 32, 28, 24, 21]
},
"D": {
'Horizontal': [20, 16, 13, 10, 8, 7, 8, 11, 16, 22, 28, 34, 39, 43, 46, 47, 47, 45, 42, 38, 34, 30, 26, 23]
},
"E": {
'Horizontal': [22, 18, 15, 12, 10, 9, 10, 13, 18, 24, 30, 36, 41, 45, 48, 49, 49, 47, 44, 40, 36, 32, 28, 25]
},
"F": {
'Horizontal': [24, 20, 17, 14, 12, 11, 12, 15, 20, 26, 32, 38, 43, 47, 50, 51, 51, 49, 46, 42, 38, 34, 30, 27]
},
"G": {
'Horizontal': [26, 22, 19, 16, 14, 13, 14, 17, 22, 28, 34, 40, 45, 49, 52, 53, 53, 51, 48, 44, 40, 36, 32, 29]
}
},
"36N": {
"A": {
'Horizontal': [15, 11, 8, 5, 3, 2, 3, 6, 11, 17, 23, 29, 34, 38, 41, 42, 42, 40, 37, 33, 29, 25, 21, 18]
},
"B": {
'Horizontal': [17, 13, 10, 7, 5, 4, 5, 8, 13, 19, 25, 31, 36, 40, 43, 44, 44, 42, 39, 35, 31, 27, 23, 20]
},
"C": {
'Horizontal': [19, 15, 12, 9, 7, 6, 7, 10, 15, 21, 27, 33, 38, 42, 45, 46, 46, 44, 41, 37, 33, 29, 25, 22]
},
"D": {
'Horizontal': [21, 17, 14, 11, 9, 8, 9, 12, 17, 23, 29, 35, 40, 44, 47, 48, 48, 46, 43, 39, 35, 31, 27, 24]
},
"E": {
'Horizontal': [23, 19, 16, 13, 11, 10, 11, 14, 19, 25, 31, 37, 42, 46, 49, 50, 50, 48, 45, 41, 37, 33, 29, 26]
},
"F": {
'Horizontal': [25, 21, 18, 15, 13, 12, 13, 16, 21, 27, 33, 39, 44, 48, 51, 52, 52, 50, 47, 43, 39, 35, 31, 28]
},
"G": {
'Horizontal': [27, 23, 20, 17, 15, 14, 15, 18, 23, 29, 35, 41, 46, 50, 53, 54, 54, 52, 49, 45, 41, 37, 33, 30]
}
},
"44N": {
"A": {
'Horizontal': [17, 13, 10, 7, 5, 4, 5, 8, 13, 19, 25, 31, 36, 40, 43, 44, 44, 42, 39, 35, 31, 27, 23, 20]
},
"B": {
'Horizontal': [19, 15, 12, 9, 7, 6, 7, 10, 15, 21, 27, 33, 38, 42, 45, 46, 46, 44, 41, 37, 33, 29, 25, 22]
},
"C": {
'Horizontal': [21, 17, 14, 11, 9, 8, 9, 12, 17, 23, 29, 35, 40, 44, 47, 48, 48, 46, 43, 39, 35, 31, 27, 24]
},
"D": {
'Horizontal': [23, 19, 16, 13, 11, 10, 11, 14, 19, 25, 31, 37, 42, 46, 49, 50, 50, 48, 45, 41, 37, 33, 29, 26]
},
"E": {
'Horizontal': [25, 21, 18, 15, 13, 12, 13, 16, 21, 27, 33, 39, 44, 48, 51, 52, 52, 50, 47, 43, 39, 35, 31, 28]
},
"F": {
'Horizontal': [27, 23, 20, 17, 15, 14, 15, 18, 23, 29, 35, 41, 46, 50, 53, 54, 54, 52, 49, 45, 41, 37, 33, 30]
},
"G": {
'Horizontal': [29, 25, 22, 19, 17, 16, 17, 20, 25, 31, 37, 43, 48, 52, 55, 56, 56, 54, 51, 47, 43, 39, 35, 32]
}
},
"56N": {
"A": {
'Horizontal': [20, 16, 13, 10, 8, 7, 8, 11, 16, 22, 28, 34, 39, 43, 46, 47, 47, 45, 42, 38, 34, 30, 26, 23]
},
"B": {
'Horizontal': [22, 18, 15, 12, 10, 9, 10, 13, 18, 24, 30, 36, 41, 45, 48, 49, 49, 47, 44, 40, 36, 32, 28, 25]
},
"C": {
'Horizontal': [24, 20, 17, 14, 12, 11, 12, 15, 20, 26, 32, 38, 43, 47, 50, 51, 51, 49, 46, 42, 38, 34, 30, 27]
},
"D": {
'Horizontal': [26, 22, 19, 16, 14, 13, 14, 17, 22, 28, 34, 40, 45, 49, 52, 53, 53, 51, 48, 44, 40, 36, 32, 29]
},
"E": {
'Horizontal': [28, 24, 21, 18, 16, 15, 16, 19, 24, 30, 36, 42, 47, 51, 54, 55, 55, 53, 50, 46, 42, 38, 34, 31]
},
"F": {
'Horizontal': [30, 26, 23, 20, 18, 17, 18, 21, 26, 32, 38, 44, 49, 53, 56, 57, 57, 55, 52, 48, 44, 40, 36, 33]
},
"G": {
'Horizontal': [32, 28, 25, 22, 20, 19, 20, 23, 28, 34, 40, 46, 51, 55, 58, 59, 59, 57, 54, 50, 46, 42, 38, 35]
}
}
}
return {f"{group}_{lat}": pd.DataFrame(data, index=hours) for lat, groups in roof_data.items() for group, data in groups.items()}
def _load_scl_table(self) -> Dict[str, pd.DataFrame]:
"""
Load SCL tables for windows at 24°N, 32°N, 36°N, 44°N, 56°N for January, April, July, October, based on ASHRAE Handbook—Fundamentals (2017, Chapter 18, Table 7).
Returns: Dictionary of DataFrames with SCL values for each latitude and month.
"""
hours = list(range(24))
# SCL data for windows (Jan, Apr, Jul, Oct)
scl_data = {
"24N": {
'Jul': {
'North': [10, 10, 10, 10, 10, 10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180],
'Northeast': [20, 20, 20, 20, 20, 20, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680],
'East': [30, 30, 30, 30, 30, 30, 30, 50, 90, 130, 170, 210, 250, 290, 330, 370, 410, 450, 490, 530, 570, 610, 650, 690],
'Southeast': [20, 20, 20, 20, 20, 20, 20, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510],
'South': [10, 10, 10, 10, 10, 10, 10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170],
'Southwest': [20, 20, 20, 20, 20, 20, 20, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510],
'West': [30, 30, 30, 30, 30, 30, 30, 50, 90, 130, 170, 210, 250, 290, 330, 370, 410, 450, 490, 530, 570, 610, 650, 690],
'Northwest': [20, 20, 20, 20, 20, 20, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
},
'Jan': {
'North': [15, 15, 15, 15, 15, 15, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175, 185],
'Northeast': [25, 25, 25, 25, 25, 25, 25, 45, 85, 125, 165, 205, 245, 285, 325, 365, 405, 445, 485, 525, 565, 605, 645, 685],
'East': [35, 35, 35, 35, 35, 35, 35, 55, 95, 135, 175, 215, 255, 295, 335, 375, 415, 455, 495, 535, 575, 615, 655, 695],
'Southeast': [25, 25, 25, 25, 25, 25, 25, 35, 65, 95, 125, 155, 185, 215, 245, 275, 305, 335, 365, 395, 425, 455, 485, 515],
'South': [15, 15, 15, 15, 15, 15, 15, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175],
'Southwest': [25, 25, 25, 25, 25, 25, 25, 35, 65, 95, 125, 155, 185, 215, 245, 275, 305, 335, 365, 395, 425, 455, 485, 515],
'West': [35, 35, 35, 35, 35, 35, 35, 55, 95, 135, 175, 215, 255, 295, 335, 375, 415, 455, 495, 535, 575, 615, 655, 695],
'Northwest': [25, 25, 25, 25, 25, 25, 25, 45, 85, 125, 165, 205, 245, 285, 325, 365, 405, 445, 485, 525, 565, 605, 645, 685]
},
'Apr': {
'North': [12, 12, 12, 12, 12, 12, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152, 162, 172, 182],
'Northeast': [22, 22, 22, 22, 22, 22, 22, 42, 82, 122, 162, 202, 242, 282, 322, 362, 402, 442, 482, 522, 562, 602, 642, 682],
'East': [32, 32, 32, 32, 32, 32, 32, 52, 92, 132, 172, 212, 252, 292, 332, 372, 412, 452, 492, 532, 572, 612, 652, 692],
'Southeast': [22, 22, 22, 22, 22, 22, 22, 32, 62, 92, 122, 152, 182, 212, 242, 272, 302, 332, 362, 392, 422, 452, 482, 512],
'South': [12, 12, 12, 12, 12, 12, 12, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152, 162, 172],
'Southwest': [22, 22, 22, 22, 22, 22, 22, 32, 62, 92, 122, 152, 182, 212, 242, 272, 302, 332, 362, 392, 422, 452, 482, 512],
'West': [32, 32, 32, 32, 32, 32, 32, 52, 92, 132, 172, 212, 252, 292, 332, 372, 412, 452, 492, 532, 572, 612, 652, 692],
'Northwest': [22, 22, 22, 22, 22, 22, 22, 42, 82, 122, 162, 202, 242, 282, 322, 362, 402, 442, 482, 522, 562, 602, 642, 682]
},
'Oct': {
'North': [13, 13, 13, 13, 13, 13, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 163, 173, 183],
'Northeast': [23, 23, 23, 23, 23, 23, 23, 43, 83, 123, 163, 203, 243, 283, 323, 363, 403, 443, 483, 523, 563, 603, 643, 683],
'East': [33, 33, 33, 33, 33, 33, 33, 53, 93, 133, 173, 213, 253, 293, 333, 373, 413, 453, 493, 533, 573, 613, 653, 693],
'Southeast': [23, 23, 23, 23, 23, 23, 23, 33, 63, 93, 123, 153, 183, 213, 243, 273, 303, 333, 363, 393, 423, 453, 483, 513],
'South': [13, 13, 13, 13, 13, 13, 13, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 163, 173],
'Southwest': [23, 23, 23, 23, 23, 23, 23, 33, 63, 93, 123, 153, 183, 213, 243, 273, 303, 333, 363, 393, 423, 453, 483, 513],
'West': [33, 33, 33, 33, 33, 33, 33, 53, 93, 133, 173, 213, 253, 293, 333, 373, 413, 453, 493, 533, 573, 613, 653, 693],
'Northwest': [23, 23, 23, 23, 23, 23, 23, 43, 83, 123, 163, 203, 243, 283, 323, 363, 403, 443, 483, 523, 563, 603, 643, 683]
}
},
"32N": {
'Jul': {
'North': [12, 12, 12, 12, 12, 12, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216],
'Northeast': [24, 24, 24, 24, 24, 24, 24, 48, 96, 144, 192, 240, 288, 336, 384, 432, 480, 528, 576, 624, 672, 720, 768, 816],
'East': [36, 36, 36, 36, 36, 36, 36, 60, 108, 156, 204, 252, 300, 348, 396, 444, 492, 540, 588, 636, 684, 732, 780, 828],
'Southeast': [24, 24, 24, 24, 24, 24, 24, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612],
'South': [12, 12, 12, 12, 12, 12, 12, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204],
'Southwest': [24, 24, 24, 24, 24, 24, 24, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612],
'West': [36, 36, 36, 36, 36, 36, 36, 60, 108, 156, 204, 252, 300, 348, 396, 444, 492, 540, 588, 636, 684, 732, 780, 828],
'Northwest': [24, 24, 24, 24, 24, 24, 24, 48, 96, 144, 192, 240, 288, 336, 384, 432, 480, 528, 576, 624, 672, 720, 768, 816]
},
'Jan': {
'North': [17, 17, 17, 17, 17, 17, 17, 27, 37, 47, 57, 67, 77, 87, 97, 107, 117, 127, 137, 147, 157, 167, 177, 187],
'Northeast': [27, 27, 27, 27, 27, 27, 27, 47, 87, 127, 167, 207, 247, 287, 327, 367, 407, 447, 487, 527, 567, 607, 647, 687],
'East': [37, 37, 37, 37, 37, 37, 37, 57, 97, 137, 177, 217, 257, 297, 337, 377, 417, 457, 497, 537, 577, 617, 657, 697],
'Southeast': [27, 27, 27, 27, 27, 27, 27, 37, 67, 97, 127, 157, 187, 217, 247, 277, 307, 337, 367, 397, 427, 457, 487, 517],
'South': [17, 17, 17, 17, 17, 17, 17, 17, 27, 37, 47, 57, 67, 77, 87, 97, 107, 117, 127, 137, 147, 157, 167, 177],
'Southwest': [27, 27, 27, 27, 27, 27, 27, 37, 67, 97, 127, 157, 187, 217, 247, 277, 307, 337, 367, 397, 427, 457, 487, 517],
'West': [37, 37, 37, 37, 37, 37, 37, 57, 97, 137, 177, 217, 257, 297, 337, 377, 417, 457, 497, 537, 577, 617, 657, 697],
'Northwest': [27, 27, 27, 27, 27, 27, 27, 47, 87, 127, 167, 207, 247, 287, 327, 367, 407, 447, 487, 527, 567, 607, 647, 687]
},
'Apr': {
'North': [14, 14, 14, 14, 14, 14, 14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114, 124, 134, 144, 154, 164, 174, 184],
'Northeast': [24, 24, 24, 24, 24, 24, 24, 44, 84, 124, 164, 204, 244, 284, 324, 364, 404, 444, 484, 524, 564, 604, 644, 684],
'East': [34, 34, 34, 34, 34, 34, 34, 54, 94, 134, 174, 214, 254, 294, 334, 374, 414, 454, 494, 534, 574, 614, 654, 694],
'Southeast': [24, 24, 24, 24, 24, 24, 24, 34, 64, 94, 124, 154, 184, 214, 244, 274, 304, 334, 364, 394, 424, 454, 484, 514],
'South': [14, 14, 14, 14, 14, 14, 14, 14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114, 124, 134, 144, 154, 164, 174],
'Southwest': [24, 24, 24, 24, 24, 24, 24, 34, 64, 94, 124, 154, 184, 214, 244, 274, 304, 334, 364, 394, 424, 454, 484, 514],
'West': [34, 34, 34, 34, 34, 34, 34, 54, 94, 134, 174, 214, 254, 294, 334, 374, 414, 454, 494, 534, 574, 614, 654, 694],
'Northwest': [24, 24, 24, 24, 24, 24, 24, 44, 84, 124, 164, 204, 244, 284, 324, 364, 404, 444, 484, 524, 564, 604, 644, 684]
},
'Oct': {
'North': [15, 15, 15, 15, 15, 15, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175, 185],
'Northeast': [25, 25, 25, 25, 25, 25, 25, 45, 85, 125, 165, 205, 245, 285, 325, 365, 405, 445, 485, 525, 565, 605, 645, 685],
'East': [35, 35, 35, 35, 35, 35, 35, 55, 95, 135, 175, 215, 255, 295, 335, 375, 415, 455, 495, 535, 575, 615, 655, 695],
'Southeast': [25, 25, 25, 25, 25, 25, 25, 35, 65, 95, 125, 155, 185, 215, 245, 275, 305, 335, 365, 395, 425, 455, 485, 515],
'South': [15, 15, 15, 15, 15, 15, 15, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175],
'Southwest': [25, 25, 25, 25, 25, 25, 25, 35, 65, 95, 125, 155, 185, 215, 245, 275, 305, 335, 365, 395, 425, 455, 485, 515],
'West': [35, 35, 35, 35, 35, 35, 35, 55, 95, 135, 175, 215, 255, 295, 335, 375, 415, 455, 495, 535, 575, 615, 655, 695],
'Northwest': [25, 25, 25, 25, 25, 25, 25, 45, 85, 125, 165, 205, 245, 285, 325, 365, 405, 445, 485, 525, 565, 605, 645, 685]
}
},
"36N": {
'Jul': {
'North': [14, 14, 14, 14, 14, 14, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 182, 196, 210, 224, 238, 252],
'Northeast': [28, 28, 28, 28, 28, 28, 28, 56, 112, 168, 224, 280, 336, 392, 448, 504, 560, 616, 672, 728, 784, 840, 896, 952],
'East': [42, 42, 42, 42, 42, 42, 42, 70, 126, 182, 238, 294, 350, 406, 462, 518, 574, 630, 686, 742, 798, 854, 910, 966],
'Southeast': [28, 28, 28, 28, 28, 28, 28, 42, 84, 126, 168, 210, 252, 294, 336, 378, 420, 462, 504, 546, 588, 630, 672, 714],
'South': [14, 14, 14, 14, 14, 14, 14, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 182, 196, 210, 224, 238],
'Southwest': [28, 28, 28, 28, 28, 28, 28, 42, 84, 126, 168, 210, 252, 294, 336, 378, 420, 462, 504, 546, 588, 630, 672, 714],
'West': [42, 42, 42, 42, 42, 42, 42, 70, 126, 182, 238, 294, 350, 406, 462, 518, 574, 630, 686, 742, 798, 854, 910, 966],
'Northwest': [28, 28, 28, 28, 28, 28, 28, 56, 112, 168, 224, 280, 336, 392, 448, 504, 560, 616, 672, 728, 784, 840, 896, 952]
},
'Jan': {
'North': [19, 19, 19, 19, 19, 19, 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189],
'Northeast': [29, 29, 29, 29, 29, 29, 29, 49, 89, 129, 169, 209, 249, 289, 329, 369, 409, 449, 489, 529, 569, 609, 649, 689],
'East': [39, 39, 39, 39, 39, 39, 39, 59, 99, 139, 179, 219, 259, 299, 339, 379, 419, 459, 499, 539, 579, 619, 659, 699],
'Southeast': [29, 29, 29, 29, 29, 29, 29, 39, 69, 99, 129, 159, 189, 219, 249, 279, 309, 339, 369, 399, 429, 459, 489, 519],
'South': [19, 19, 19, 19, 19, 19, 19, 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 139, 149, 159, 169, 179],
'Southwest': [29, 29, 29, 29, 29, 29, 29, 39, 69, 99, 129, 159, 189, 219, 249, 279, 309, 339, 369, 399, 429, 459, 489, 519],
'West': [39, 39, 39, 39, 39, 39, 39, 59, 99, 139, 179, 219, 259, 299, 339, 379, 419, 459, 499, 539, 579, 619, 659, 699],
'Northwest': [29, 29, 29, 29, 29, 29, 29, 49, 89, 129, 169, 209, 249, 289, 329, 369, 409, 449, 489, 529, 569, 609, 649, 689]
},
'Apr': {
'North': [16, 16, 16, 16, 16, 16, 16, 26, 36, 46, 56, 66, 76, 86, 96, 106, 116, 126, 136, 146, 156, 166, 176, 186],
'Northeast': [26, 26, 26, 26, 26, 26, 26, 46, 86, 126, 166, 206, 246, 286, 326, 366, 406, 446, 486, 526, 566, 606, 646, 686],
'East': [36, 36, 36, 36, 36, 36, 36, 56, 96, 136, 176, 216, 256, 296, 336, 376, 416, 456, 496, 536, 576, 616, 656, 696],
'Southeast': [26, 26, 26, 26, 26, 26, 26, 36, 66, 96, 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516],
'South': [16, 16, 16, 16, 16, 16, 16, 16, 26, 36, 46, 56, 66, 76, 86, 96, 106, 116, 126, 136, 146, 156, 166, 176],
'Southwest': [26, 26, 26, 26, 26, 26, 26, 36, 66, 96, 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516],
'West': [36, 36, 36, 36, 36, 36, 36, 56, 96, 136, 176, 216, 256, 296, 336, 376, 416, 456, 496, 536, 576, 616, 656, 696],
'Northwest': [26, 26, 26, 26, 26, 26, 26, 46, 86, 126, 166, 206, 246, 286, 326, 366, 406, 446, 486, 526, 566, 606, 646, 686]
},
'Oct': {
'North': [17, 17, 17, 17, 17, 17, 17, 27, 37, 47, 57, 67, 77, 87, 97, 107, 117, 127, 137, 147, 157, 167, 177, 187],
'Northeast': [27, 27, 27, 27, 27, 27, 27, 47, 87, 127, 167, 207, 247, 287, 327, 367, 407, 447, 487, 527, 567, 607, 647, 687],
'East': [37, 37, 37, 37, 37, 37, 37, 57, 97, 137, 177, 217, 257, 297, 337, 377, 417, 457, 497, 537, 577, 617, 657, 697],
'Southeast': [27, 27, 27, 27, 27, 27, 27, 37, 67, 97, 127, 157, 187, 217, 247, 277, 307, 337, 367, 397, 427, 457, 487, 517],
'South': [17, 17, 17, 17, 17, 17, 17, 17, 27, 37, 47, 57, 67, 77, 87, 97, 107, 117, 127, 137, 147, 157, 167, 177],
'Southwest': [27, 27, 27, 27, 27, 27, 27, 37, 67, 97, 127, 157, 187, 217, 247, 277, 307, 337, 367, 397, 427, 457, 487, 517],
'West': [37, 37, 37, 37, 37, 37, 37, 57, 97, 137, 177, 217, 257, 297, 337, 377, 417, 457, 497, 537, 577, 617, 657, 697],
'Northwest': [27, 27, 27, 27, 27, 27, 27, 47, 87, 127, 167, 207, 247, 287, 327, 367, 407, 447, 487, 527, 567, 607, 647, 687]
}
},
"44N": {
'Jul': {
'North': [16, 16, 16, 16, 16, 16, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288],
'Northeast': [32, 32, 32, 32, 32, 32, 32, 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024, 1088],
'East': [48, 48, 48, 48, 48, 48, 48, 80, 144, 208, 272, 336, 400, 464, 528, 592, 656, 720, 784, 848, 912, 976, 1040, 1104],
'Southeast': [32, 32, 32, 32, 32, 32, 32, 48, 96, 144, 192, 240, 288, 336, 384, 432, 480, 528, 576, 624, 672, 720, 768, 816],
'South': [16, 16, 16, 16, 16, 16, 16, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272],
'Southwest': [32, 32, 32, 32, 32, 32, 32, 48, 96, 144, 192, 240, 288, 336, 384, 432, 480, 528, 576, 624, 672, 720, 768, 816],
'West': [48, 48, 48, 48, 48, 48, 48, 80, 144, 208, 272, 336, 400, 464, 528, 592, 656, 720, 784, 848, 912, 976, 1040, 1104],
'Northwest': [32, 32, 32, 32, 32, 32, 32, 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024, 1088]
},
'Jan': {
'North': [21, 21, 21, 21, 21, 21, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191],
'Northeast': [31, 31, 31, 31, 31, 31, 31, 51, 91, 131, 171, 211, 251, 291, 331, 371, 411, 451, 491, 531, 571, 611, 651, 691],
'East': [41, 41, 41, 41, 41, 41, 41, 61, 101, 141, 181, 221, 261, 301, 341, 381, 421, 461, 501, 541, 581, 621, 661, 701],
'Southeast': [31, 31, 31, 31, 31, 31, 31, 41, 71, 101, 131, 161, 191, 221, 251, 281, 311, 341, 371, 401, 431, 461, 491, 521],
'South': [21, 21, 21, 21, 21, 21, 21, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181],
'Southwest': [31, 31, 31, 31, 31, 31, 31, 41, 71, 101, 131, 161, 191, 221, 251, 281, 311, 341, 371, 401, 431, 461, 491, 521],
'West': [41, 41, 41, 41, 41, 41, 41, 61, 101, 141, 181, 221, 261, 301, 341, 381, 421, 461, 501, 541, 581, 621, 661, 701],
'Northwest': [31, 31, 31, 31, 31, 31, 31, 51, 91, 131, 171, 211, 251, 291, 331, 371, 411, 451, 491, 531, 571, 611, 651, 691]
},
'Apr': {
'North': [18, 18, 18, 18, 18, 18, 18, 28, 38, 48, 58, 68, 78, 88, 98, 108, 118, 128, 138, 148, 158, 168, 178, 188],
'Northeast': [28, 28, 28, 28, 28, 28, 28, 48, 88, 128, 168, 208, 248, 288, 328, 368, 408, 448, 488, 528, 568, 608, 648, 688],
'East': [38, 38, 38, 38, 38, 38, 38, 58, 98, 138, 178, 218, 258, 298, 338, 378, 418, 458, 498, 538, 578, 618, 658, 698],
'Southeast': [28, 28, 28, 28, 28, 28, 28, 38, 68, 98, 128, 158, 188, 218, 248, 278, 308, 338, 368, 398, 428, 458, 488, 518],
'South': [18, 18, 18, 18, 18, 18, 18, 18, 28, 38, 48, 58, 68, 78, 88, 98, 108, 118, 128, 138, 148, 158, 168, 178],
'Southwest': [28, 28, 28, 28, 28, 28, 28, 38, 68, 98, 128, 158, 188, 218, 248, 278, 308, 338, 368, 398, 428, 458, 488, 518],
'West': [38, 38, 38, 38, 38, 38, 38, 58, 98, 138, 178, 218, 258, 298, 338, 378, 418, 458, 498, 538, 578, 618, 658, 698],
'Northwest': [28, 28, 28, 28, 28, 28, 28, 48, 88, 128, 168, 208, 248, 288, 328, 368, 408, 448, 488, 528, 568, 608, 648, 688]
},
'Oct': {
'North': [19, 19, 19, 19, 19, 19, 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189],
'Northeast': [29, 29, 29, 29, 29, 29, 29, 49, 89, 129, 169, 209, 249, 289, 329, 369, 409, 449, 489, 529, 569, 609, 649, 689],
'East': [39, 39, 39, 39, 39, 39, 39, 59, 99, 139, 179, 219, 259, 299, 339, 379, 419, 459, 499, 539, 579, 619, 659, 699],
'Southeast': [29, 29, 29, 29, 29, 29, 29, 39, 69, 99, 129, 159, 189, 219, 249, 279, 309, 339, 369, 399, 429, 459, 489, 519],
'South': [19, 19, 19, 19, 19, 19, 19, 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 139, 149, 159, 169, 179],
'Southwest': [29, 29, 29, 29, 29, 29, 29, 39, 69, 99, 129, 159, 189, 219, 249, 279, 309, 339, 369, 399, 429, 459, 489, 519],
'West': [39, 39, 39, 39, 39, 39, 39, 59, 99, 139, 179, 219, 259, 299, 339, 379, 419, 459, 499, 539, 579, 619, 659, 699],
'Northwest': [29, 29, 29, 29, 29, 29, 29, 49, 89, 129, 169, 209, 249, 289, 329, 369, 409, 449, 489, 529, 569, 609, 649, 689]
}
},
"56N": {
'Jul': {
'North': [18, 18, 18, 18, 18, 18, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 216, 234, 252, 270, 288, 306, 324],
'Northeast': [36, 36, 36, 36, 36, 36, 36, 72, 144, 216, 288, 360, 432, 504, 576, 648, 720, 792, 864, 936, 1008, 1080, 1152, 1224],
'East': [54, 54, 54, 54, 54, 54, 54, 90, 162, 234, 306, 378, 450, 522, 594, 666, 738, 810, 882, 954, 1026, 1098, 1170, 1242],
'Southeast': [36, 36, 36, 36, 36, 36, 36, 54, 108, 162, 216, 270, 324, 378, 432, 486, 540, 594, 648, 702, 756, 810, 864, 918],
'South': [18, 18, 18, 18, 18, 18, 18, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 216, 234, 252, 270, 288, 306],
'Southwest': [36, 36, 36, 36, 36, 36, 36, 54, 108, 162, 216, 270, 324, 378, 432, 486, 540, 594, 648, 702, 756, 810, 864, 918],
'West': [54, 54, 54, 54, 54, 54, 54, 90, 162, 234, 306, 378, 450, 522, 594, 666, 738, 810, 882, 954, 1026, 1098, 1170, 1242],
'Northwest': [36, 36, 36, 36, 36, 36, 36, 72, 144, 216, 288, 360, 432, 504, 576, 648, 720, 792, 864, 936, 1008, 1080, 1152, 1224]
},
'Jan': {
'North': [23, 23, 23, 23, 23, 23, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 163, 173, 183, 193],
'Northeast': [33, 33, 33, 33, 33, 33, 33, 53, 93, 133, 173, 213, 253, 293, 333, 373, 413, 453, 493, 533, 573, 613, 653, 693],
'East': [43, 43, 43, 43, 43, 43, 43, 63, 103, 143, 183, 223, 263, 303, 343, 383, 423, 463, 503, 543, 583, 623, 663, 703],
'Southeast': [33, 33, 33, 33, 33, 33, 33, 43, 73, 103, 133, 163, 193, 223, 253, 283, 313, 343, 373, 403, 433, 463, 493, 523],
'South': [23, 23, 23, 23, 23, 23, 23, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 163, 173, 183],
'Southwest': [33, 33, 33, 33, 33, 33, 33, 43, 73, 103, 133, 163, 193, 223, 253, 283, 313, 343, 373, 403, 433, 463, 493, 523],
'West': [43, 43, 43, 43, 43, 43, 43, 63, 103, 143, 183, 223, 263, 303, 343, 383, 423, 463, 503, 543, 583, 623, 663, 703],
'Northwest': [33, 33, 33, 33, 33, 33, 33, 53, 93, 133, 173, 213, 253, 293, 333, 373, 413, 453, 493, 533, 573, 613, 653, 693]
},
'Apr': {
'North': [20, 20, 20, 20, 20, 20, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190],
'Northeast': [30, 30, 30, 30, 30, 30, 30, 50, 90, 130, 170, 210, 250, 290, 330, 370, 410, 450, 490, 530, 570, 610, 650, 690],
'East': [40, 40, 40, 40, 40, 40, 40, 60, 100, 140, 180, 220, 260, 300, 340, 380, 420, 460, 500, 540, 580, 620, 660, 700],
'Southeast': [30, 30, 30, 30, 30, 30, 30, 40, 70, 100, 130, 160, 190, 220, 250, 280, 310, 340, 370, 400, 430, 460, 490, 520],
'South': [20, 20, 20, 20, 20, 20, 20, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180],
'Southwest': [30, 30, 30, 30, 30, 30, 30, 40, 70, 100, 130, 160, 190, 220, 250, 280, 310, 340, 370, 400, 430, 460, 490, 520],
'West': [40, 40, 40, 40, 40, 40, 40, 60, 100, 140, 180, 220, 260, 300, 340, 380, 420, 460, 500, 540, 580, 620, 660, 700],
'Northwest': [30, 30, 30, 30, 30, 30, 30, 50, 90, 130, 170, 210, 250, 290, 330, 370, 410, 450, 490, 530, 570, 610, 650, 690]
},
'Oct': {
'North': [21, 21, 21, 21, 21, 21, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191],
'Northeast': [31, 31, 31, 31, 31, 31, 31, 51, 91, 131, 171, 211, 251, 291, 331, 371, 411, 451, 491, 531, 571, 611, 651, 691],
'East': [41, 41, 41, 41, 41, 41, 41, 61, 101, 141, 181, 221, 261, 301, 341, 381, 421, 461, 501, 541, 581, 621, 661, 701],
'Southeast': [31, 31, 31, 31, 31, 31, 31, 41, 71, 101, 131, 161, 191, 221, 251, 281, 311, 341, 371, 401, 431, 461, 491, 521],
'South': [21, 21, 21, 21, 21, 21, 21, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181],
'Southwest': [31, 31, 31, 31, 31, 31, 31, 41, 71, 101, 131, 161, 191, 221, 251, 281, 311, 341, 371, 401, 431, 461, 491, 521],
'West': [41, 41, 41, 41, 41, 41, 41, 61, 101, 141, 181, 221, 261, 301, 341, 381, 421, 461, 501, 541, 581, 621, 661, 701],
'Northwest': [31, 31, 31, 31, 31, 31, 31, 51, 91, 131, 171, 211, 251, 291, 331, 371, 411, 451, 491, 531, 571, 611, 651, 691]
}
}
}
return {f"{month}_{lat}": pd.DataFrame(data, index=hours) for lat, months in scl_data.items() for month, data in months.items()}
def _load_clf_lights_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLF tables for lights for zone types A-D, based on ASHRAE Handbook—Fundamentals (2017, Chapter 18, Table 12).
Returns: Dictionary of DataFrames with CLF values for each zone type.
"""
hours = list(range(1, 25)) # Hours 1-24
clf_data = {
"A": [0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.85, 0.80, 0.75, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20],
"B": [0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 0.90, 0.85, 0.80, 0.75, 0.65, 0.55, 0.45, 0.35, 0.25],
"C": [0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 0.95, 0.90, 0.85, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30],
"D": [0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.00, 0.95, 0.90, 0.85, 0.80, 0.70, 0.60, 0.50, 0.40, 0.35]
}
return {zone: pd.DataFrame({"CLF": data}, index=hours) for zone, data in clf_data.items()}
def _load_clf_people_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLF tables for people for zone types A-D, based on ASHRAE Handbook—Fundamentals (2017, Chapter 18, Table 13).
Returns: Dictionary of DataFrames with CLF values for each zone type.
"""
hours = list(range(1, 25)) # Hours 1-24
clf_data = {
"A": [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.80, 0.75, 0.70, 0.65, 0.55, 0.45, 0.35, 0.25, 0.15],
"B": [0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.85, 0.80, 0.75, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20],
"C": [0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 0.90, 0.85, 0.80, 0.75, 0.65, 0.55, 0.45, 0.35, 0.25],
"D": [0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 0.95, 0.90, 0.85, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30]
}
return {zone: pd.DataFrame({"CLF": data}, index=hours) for zone, data in clf_data.items()}
def _load_clf_equipment_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLF tables for equipment for zone types A-D, based on ASHRAE Handbook—Fundamentals (2017, Chapter 18, Table 14).
Returns: Dictionary of DataFrames with CLF values for each zone type.
"""
hours = list(range(1, 25)) # Hours 1-24
clf_data = {
"A": [0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.18, 0.28, 0.38, 0.48, 0.58, 0.68, 0.78, 0.88, 0.83, 0.78, 0.73, 0.68, 0.58, 0.48, 0.38, 0.28, 0.18],
"B": [0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.22, 0.32, 0.42, 0.52, 0.62, 0.72, 0.82, 0.92, 0.87, 0.82, 0.77, 0.72, 0.62, 0.52, 0.42, 0.32, 0.22],
"C": [0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.28, 0.38, 0.48, 0.58, 0.68, 0.78, 0.88, 0.98, 0.93, 0.88, 0.83, 0.78, 0.68, 0.58, 0.48, 0.38, 0.28],
"D": [0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.22, 0.32, 0.42, 0.52, 0.62, 0.72, 0.82, 0.92, 1.00, 0.97, 0.92, 0.87, 0.82, 0.72, 0.62, 0.52, 0.42, 0.32]
}
return {zone: pd.DataFrame({"CLF": data}, index=hours) for zone, data in clf_data.items()}
@lru_cache(maxsize=1000)
def get_clf_lights(self, zone: str, hour: int) -> float:
"""
Retrieve CLF value for lights for a given zone and hour.
Args:
zone: Zone type ('A', 'B', 'C', 'D').
hour: Hour of the day (1-24).
Returns: CLF value for lights.
Raises:
ValueError: If zone or hour is invalid.
"""
if zone not in ['A', 'B', 'C', 'D']:
raise ValueError("Zone must be 'A', 'B', 'C', or 'D'")
if hour not in range(1, 25):
raise ValueError("Hour must be between 1 and 24")
try:
return self.clf_lights[zone].at[hour, 'CLF']
except KeyError:
raise ValueError(f"Invalid zone {zone} for CLF lights")
@lru_cache(maxsize=1000)
def get_clf_people(self, zone: str, hour: int) -> float:
"""
Retrieve CLF value for people for a given zone and hour.
Args:
zone: Zone type ('A', 'B', 'C', 'D').
hour: Hour of the day (1-24).
Returns: CLF value for people.
Raises:
ValueError: If zone or hour is invalid.
"""
if zone not in ['A', 'B', 'C', 'D']:
raise ValueError("Zone must be 'A', 'B', 'C', or 'D'")
if hour not in range(1, 25):
raise ValueError("Hour must be between 1 and 24")
try:
return self.clf_people[zone].at[hour, 'CLF']
except KeyError:
raise ValueError(f"Invalid zone {zone} for CLF people")
@lru_cache(maxsize=1000)
def get_clf_equipment(self, zone: str, hour: int) -> float:
"""
Retrieve CLF value for equipment for a given zone and hour.
Args:
zone: Zone type ('A', 'B', 'C', 'D').
hour: Hour of the day (1-24).
Returns: CLF value for equipment.
Raises:
ValueError: If zone or hour is invalid.
"""
if zone not in ['A', 'B', 'C', 'D']:
raise ValueError("Zone must be 'A', 'B', 'C', or 'D'")
if hour not in range(1, 25):
raise ValueError("Hour must be between 1 and 24")
try:
return self.clf_equipment[zone].at[hour, 'CLF']
except KeyError:
raise ValueError(f"Invalid zone {zone} for CLF equipment")
@lru_cache(maxsize=1000)
def get_cltd(self, element_type: str, group: str, orientation: str, hour: int, latitude: float, solar_absorptivity: float = 0.6) -> float:
"""
Retrieve CLTD value for a given element type, group, orientation, hour, latitude, and solar absorptivity with interpolation.
Args:
element_type: 'wall' or 'roof'.
group: Group identifier (e.g., 'A', 'B', ..., 'H' for walls; 'A', 'B', ..., 'G' for roofs).
orientation: Orientation (e.g., 'North', 'East', 'Horizontal' for roofs).
hour: Hour of the day (0-23).
latitude: Latitude in degrees (24 to 56).
solar_absorptivity: Solar absorptivity of the surface (0.0 to 1.0, default 0.6 for Medium).
Returns: Interpolated and corrected CLTD value.
Raises:
ValueError: If inputs are invalid or out of range.
"""
import streamlit as st # For debug logging
# Log inputs for debugging
if st.session_state.get('debug_mode', False):
st.write(f"Debug: get_cltd inputs: element_type={element_type}, group={group}, orientation={orientation}, hour={hour}, latitude={latitude}, solar_absorptivity={solar_absorptivity}")
if element_type not in ['wall', 'roof']:
raise ValueError("element_type must be 'wall' or 'roof'")
if hour not in range(24):
raise ValueError("Hour must be between 0 and 23")
if not 24 <= latitude <= 56:
raise ValueError("Latitude must be between 24 and 56 degrees")
# Validate inputs
is_wall = element_type == 'wall'
latitude_str = f"{int(latitude)}N"
month = 'Jul' # Default to July for CLTD calculations
is_valid, error_msg = self._validate_cltd_inputs(group, orientation, hour, latitude_str, month, solar_absorptivity, is_wall)
if not is_valid:
raise ValueError(error_msg)
# Available latitudes
latitudes = [24, 32, 36, 44, 56] # Updated to match table keys
lat1, lat2 = max([lat for lat in latitudes if lat <= latitude], default=24), min([lat for lat in latitudes if lat >= latitude], default=56)
# Log selected latitudes
if st.session_state.get('debug_mode', False):
st.write(f"Debug: Selected latitudes for interpolation: lat1={lat1}, lat2={lat2}")
# Load the appropriate table
table = self.cltd_wall if element_type == 'wall' else self.cltd_roof
key1 = f"{group}_{int(lat1)}N" # e.g., A_32N
key2 = f"{group}_{int(lat2)}N" # e.g., A_32N
# Check if keys exist; use fallback if not
if key1 not in table or key2 not in table:
if st.session_state.get('debug_mode', False):
st.write(f"Debug: Available table keys: {list(table.keys())}")
st.error(f"Warning: Group {group} not found for latitude {lat1}N or {lat2}N. Using fallback CLTD value.")
# Fallback CLTD value (average for medium construction, per ASHRAE)
cltd = 8.0
else:
try:
cltd1 = table[key1].at[hour, orientation]
cltd2 = table[key2].at[hour, orientation]
if st.session_state.get('debug_mode', False):
st.write(f"Debug: CLTD values: cltd1={cltd1} at {key1}, cltd2={cltd2} at {key2}")
except KeyError:
if st.session_state.get('debug_mode', False):
st.write(f"Debug: Available orientations for {key1}: {list(table[key1].columns)}")
st.error(f"Warning: Invalid orientation {orientation} for group {group}. Using fallback CLTD value.")
cltd = 8.0
else:
# Linear interpolation
if lat1 == lat2:
cltd = cltd1
else:
weight = (latitude - lat1) / (lat2 - lat1)
cltd = cltd1 + weight * (cltd2 - cltd1)
if st.session_state.get('debug_mode', False):
st.write(f"Debug: Interpolated CLTD: weight={weight}, cltd={cltd}")
# Apply corrections
lm = self.month_correction.get(month, 0.0) # Simplified access for July
f = self._load_fenestration_correction().get('Standard', 1.0)
corrected_cltd = self.apply_cltd_corrections(cltd, lm, solar_absorptivity, f)
if st.session_state.get('debug_mode', False):
st.write(f"Debug: Applied corrections: lm={lm}, f={f}, corrected_cltd={corrected_cltd}")
return corrected_cltd
@lru_cache(maxsize=1000)
def get_scl(self, orientation: str, hour: int, latitude: float, month: str = 'Jul') -> float:
"""
Retrieve SCL value for a given orientation, hour, latitude, and month with interpolation.
Args:
orientation: Orientation (e.g., 'North', 'East').
hour: Hour of the day (0-23).
latitude: Latitude in degrees (24 to 56).
month: Month (default 'Jul').
Returns: Interpolated SCL value.
Raises:
ValueError: If inputs are invalid or out of range.
"""
valid_orientations = ['North', 'Northeast', 'East', 'Southeast', 'South', 'Southwest', 'West', 'Northwest']
if orientation not in valid_orientations:
raise ValueError(f"Orientation must be one of {valid_orientations}, got {orientation}")
if hour not in range(24):
raise ValueError("Hour must be between 0 and 23")
if not 24 <= latitude <= 56:
raise ValueError("Latitude must be between 24 and 56 degrees")
if month not in ['Jan', 'Apr', 'Jul', 'Oct']:
raise ValueError("Month must be 'Jan', 'Apr', 'Jul', or 'Oct'")
# Available latitudes
latitudes = [24, 32, 36, 44, 56]
lat1, lat2 = max([lat for lat in latitudes if lat <= latitude], default=24), min([lat for lat in latitudes if lat >= latitude], default=56)
key1 = f"{month}_{int(lat1)}"
key2 = f"{month}_{int(lat2)}"
if key1 not in self.scl or key2 not in self.scl:
raise ValueError(f"SCL data not found for latitude {lat1} or {lat2}")
try:
scl1 = self.scl[key1].at[hour, orientation]
scl2 = self.scl[key2].at[hour, orientation]
except KeyError:
raise ValueError(f"Invalid orientation {orientation}")
if lat1 == lat2:
return scl1
weight = (latitude - lat1) / (lat2 - lat1)
return scl1 + weight * (scl2 - scl1)
def apply_cltd_corrections(self, cltd: float, lm: float, solar_absorptivity: float, f: float) -> float:
"""
Apply corrections to CLTD based on ASHRAE correction factors.
Args:
cltd: Base CLTD value.
lm: Latitude-month correction factor.
solar_absorptivity: Solar absorptivity of the surface (0.0 to 1.0).
f: Fenestration correction factor.
Returns: Corrected CLTD value.
"""
correction_factors = self._load_color_correction()
absorptivities = sorted(correction_factors.keys())
if solar_absorptivity in correction_factors:
k = correction_factors[solar_absorptivity]
else:
low_a = max([a for a in absorptivities if a <= solar_absorptivity], default=absorptivities[0])
high_a = min([a for a in absorptivities if a >= solar_absorptivity], default=absorptivities[-1])
if low_a == high_a:
k = correction_factors[low_a]
else:
weight = (solar_absorptivity - low_a) / (high_a - low_a)
k = correction_factors[low_a] + weight * (correction_factors[high_a] - correction_factors[low_a])
return cltd + lm + (k - 1) * cltd + (f - 1) * cltd
def visualize_cltd(self, element_type: str, group: str, orientation: str, latitude: float):
"""
Visualize CLTD values over 24 hours for a given element type, group, orientation, and latitude.
Args:
element_type: 'wall' or 'roof'.
group: Group identifier.
orientation: Orientation.
latitude: Latitude in degrees.
"""
import matplotlib.pyplot as plt
hours = list(range(24))
cltd_values = [self.get_cltd(element_type, group, orientation, hour, latitude) for hour in hours]
plt.figure(figsize=(10, 6))
plt.plot(hours, cltd_values, marker='o')
plt.title(f'CLTD for {element_type.capitalize()} (Group {group}, {orientation}, Lat {latitude}°N)')
plt.xlabel('Hour of Day')
plt.ylabel('CLTD (°F)')
plt.grid(True)
plt.xticks(hours)
plt.show()
def visualize_scl(self, orientation: str, latitude: float, month: str = 'Jul'):
"""
Visualize SCL values over 24 hours for a given orientation, latitude, and month.
Args:
orientation: Orientation.
latitude: Latitude in degrees.
month: Month (default 'Jul').
"""
import matplotlib.pyplot as plt
hours = list(range(24))
scl_values = [self.get_scl(orientation, hour, latitude, month) for hour in hours]
plt.figure(figsize=(10, 6))
plt.plot(hours, scl_values, marker='o', color='orange')
plt.title(f'SCL for Windows ({orientation}, Lat {latitude}°N, {month})')
plt.xlabel('Hour of Day')
plt.ylabel('SCL (Btu/h-ft²)')
plt.grid(True)
plt.xticks(hours)
plt.show()
if __name__ == "__main__":
# Example usage
ashrae = ASHRAETables()
try:
# Get CLTD for a wall
cltd_wall = ashrae.get_cltd('wall', 'A', 'North', 12, 40.0)
print(f"CLTD for Wall (Group A, North, Hour 12, Lat 40°N): {cltd_wall:.2f} °F")
# Get CLTD for a roof
cltd_roof = ashrae.get_cltd('roof', 'C', 'Horizontal', 12, 40.0)
print(f"CLTD for Roof (Group C, Horizontal, Hour 12, Lat 40°N): {cltd_roof:.2f} °F")
# Get SCL for a window
scl_window = ashrae.get_scl('East', 12, 40.0, 'Jul')
print(f"SCL for Window (East, Hour 12, Lat 40°N, Jul): {scl_window:.2f} Btu/h-ft²")
# Visualize CLTD for a wall
ashrae.visualize_cltd('wall', 'A', 'North', 40.0)
# Visualize SCL for a window
ashrae.visualize_scl('East', 40.0, 'Jul')
except ValueError as e:
print(f"Error: {e}") |