File size: 35,788 Bytes
845939b
 
e72e041
 
845939b
e72e041
 
 
 
845939b
 
 
 
 
e72e041
 
 
 
845939b
e72e041
 
845939b
 
 
e72e041
 
845939b
e72e041
 
 
 
845939b
 
 
e72e041
 
845939b
e72e041
 
 
845939b
 
 
 
e72e041
 
 
 
845939b
 
 
e72e041
 
845939b
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
 
845939b
 
 
 
 
 
 
 
 
 
e72e041
 
 
845939b
e72e041
 
 
 
 
845939b
e72e041
 
 
 
 
 
 
 
845939b
e72e041
 
 
 
 
 
 
 
 
 
845939b
 
e72e041
845939b
 
 
 
e72e041
845939b
 
 
 
 
 
 
e72e041
 
845939b
e72e041
 
 
845939b
e72e041
 
 
 
 
 
 
 
 
845939b
e72e041
 
845939b
 
 
 
e72e041
845939b
 
 
 
 
 
 
e72e041
 
845939b
e72e041
 
845939b
e72e041
 
 
 
 
 
845939b
e72e041
 
845939b
e72e041
 
845939b
e72e041
 
 
 
845939b
 
e72e041
 
845939b
 
 
 
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
845939b
e72e041
845939b
 
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
845939b
e72e041
 
 
 
 
 
 
 
 
845939b
e72e041
 
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
845939b
 
e72e041
 
845939b
e72e041
 
 
 
845939b
 
 
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845939b
 
 
 
 
e72e041
845939b
 
 
 
 
 
e72e041
 
 
 
 
 
 
 
 
 
845939b
e72e041
845939b
 
 
 
e72e041
845939b
 
 
 
 
 
 
e72e041
 
845939b
e72e041
 
 
 
 
845939b
e72e041
845939b
 
 
 
e72e041
 
 
845939b
 
 
 
 
e72e041
 
 
 
 
 
 
 
 
845939b
 
e72e041
 
845939b
e72e041
 
845939b
 
 
 
 
 
e72e041
 
 
845939b
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
845939b
e72e041
 
845939b
e72e041
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
845939b
 
 
 
 
 
 
 
 
 
 
e72e041
 
 
 
 
 
 
 
 
 
 
 
845939b
 
 
 
 
 
 
 
 
 
 
e72e041
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
845939b
 
 
e72e041
845939b
 
e72e041
 
845939b
e72e041
 
 
 
 
 
 
 
845939b
e72e041
 
 
845939b
e72e041
 
 
845939b
e72e041
 
 
 
 
845939b
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
845939b
e72e041
 
 
 
845939b
e72e041
 
 
 
845939b
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845939b
e72e041
 
845939b
 
e72e041
 
 
 
845939b
e72e041
 
 
 
 
 
 
845939b
10c760b
845939b
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329295
 
e72e041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10c760b
 
 
e72e041
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
"""
Psychrometric module for HVAC Load Calculator.
This module implements psychrometric calculations for air properties,
including functions for mixing air streams and handling different altitudes.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1.

Author: Dr Majed Abuseif
Date: May 2025 (Enhanced based on plan, preserving original features)
Version: 1.3.0
"""

from typing import Dict, List, Any, Optional, Tuple
import math
import numpy as np
import logging

# Set up logging
logger = logging.getLogger(__name__)

# Constants (Preserved from original)
ATMOSPHERIC_PRESSURE = 101325  # Standard atmospheric pressure at sea level in Pa
WATER_MOLECULAR_WEIGHT = 18.01534  # kg/kmol
DRY_AIR_MOLECULAR_WEIGHT = 28.9645  # kg/kmol
UNIVERSAL_GAS_CONSTANT = 8314.462618  # J/(kmol·K)
GAS_CONSTANT_DRY_AIR = UNIVERSAL_GAS_CONSTANT / DRY_AIR_MOLECULAR_WEIGHT  # J/(kg·K) = 287.058
GAS_CONSTANT_WATER_VAPOR = UNIVERSAL_GAS_CONSTANT / WATER_MOLECULAR_WEIGHT  # J/(kg·K) = 461.52

# Constants for altitude calculation (Standard Atmosphere Model)
SEA_LEVEL_TEMP_K = 288.15  # K (15 °C)
LAPSE_RATE = 0.0065  # K/m
GRAVITY = 9.80665  # m/s²

class Psychrometrics:
    """Class for psychrometric calculations."""

    # --- Input Validation (Preserved and slightly enhanced) --- #
    @staticmethod
    def validate_inputs(t_db: Optional[float] = None, rh: Optional[float] = None,
                        w: Optional[float] = None, h: Optional[float] = None,
                        p_atm: Optional[float] = None) -> None:
        """
        Validate input parameters for psychrometric calculations.
        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity in % (0-100)
            w: Humidity ratio (kg/kg)
            h: Enthalpy (J/kg)
            p_atm: Atmospheric pressure in Pa
        Raises:
            ValueError: If inputs are invalid
        """
        if t_db is not None and not -100 <= t_db <= 200: # Wider range for intermediate calcs
            raise ValueError(f"Temperature {t_db}°C must be within a reasonable range (-100°C to 200°C)")
        if rh is not None and not 0 <= rh <= 100:
            # Allow slightly > 100 due to calculation tolerances, clamp later
            if rh < 0 or rh > 105:
                 raise ValueError(f"Relative humidity {rh}% must be between 0 and 100%")
        if w is not None and w < 0:
            raise ValueError(f"Humidity ratio {w} cannot be negative")
        # Enthalpy can be negative relative to datum
        # if h is not None and h < 0:
        #     raise ValueError(f"Enthalpy {h} cannot be negative")
        if p_atm is not None and not 10000 <= p_atm <= 120000: # Typical atmospheric range
            raise ValueError(f"Atmospheric pressure {p_atm} Pa must be within a reasonable range (10kPa to 120kPa)")

    # --- Altitude/Pressure Calculation (Added based on plan) --- #
    @staticmethod
    def pressure_at_altitude(altitude: float, sea_level_pressure: float = ATMOSPHERIC_PRESSURE,
                             sea_level_temp_c: float = 15.0) -> float:
        """
        Calculate atmospheric pressure at a given altitude using the standard atmosphere model.
        Reference: https://en.wikipedia.org/wiki/Barometric_formula
        Args:
            altitude: Altitude above sea level in meters.
            sea_level_pressure: Pressure at sea level in Pa (default: 101325 Pa).
            sea_level_temp_c: Temperature at sea level in °C (default: 15 °C).
        Returns:
            Atmospheric pressure at the given altitude in Pa.
        """
        if altitude < -500 or altitude > 80000: # Valid range for model
             logger.warning(f"Altitude {altitude}m is outside the typical range for the standard atmosphere model.")

        sea_level_temp_k = sea_level_temp_c + 273.15
        r_da = GAS_CONSTANT_DRY_AIR

        # Formula assumes constant lapse rate up to 11km
        if altitude <= 11000:
            temp_k = sea_level_temp_k - LAPSE_RATE * altitude
            pressure = sea_level_pressure * (temp_k / sea_level_temp_k) ** (GRAVITY / (LAPSE_RATE * r_da))
        else:
            # Simplified: Use constant temperature above 11km (tropopause)
            # A more complex model is needed for higher altitudes
            logger.warning("Altitude > 11km. Using simplified pressure calculation.")
            temp_11km = sea_level_temp_k - LAPSE_RATE * 11000
            pressure_11km = sea_level_pressure * (temp_11km / sea_level_temp_k) ** (GRAVITY / (LAPSE_RATE * r_da))
            pressure = pressure_11km * math.exp(-GRAVITY * (altitude - 11000) / (r_da * temp_11km))

        return pressure

    # --- Core Psychrometric Functions (Preserved from original) --- #
    @staticmethod
    def saturation_pressure(t_db: float) -> float:
        """
        Calculate saturation pressure of water vapor.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equations 5 and 6.
        Args:
            t_db: Dry-bulb temperature in °C
        Returns:
            Saturation pressure in Pa
        """
        # Input validation is implicitly handled by usage, but can be added
        # Psychrometrics.validate_inputs(t_db=t_db)

        t_k = t_db + 273.15

        if t_k <= 0:
             # Avoid issues with log(T) or 1/T at or below absolute zero
             return 0.0

        if t_db >= 0:
            # Eq 6 (ASHRAE 2017) - Renamed from Eq 5 in older versions
            C1 = -5.8002206E+03
            C2 = 1.3914993E+00
            C3 = -4.8640239E-02
            C4 = 4.1764768E-05
            C5 = -1.4452093E-08
            C6 = 6.5459673E+00
            ln_p_ws = C1/t_k + C2 + C3*t_k + C4*t_k**2 + C5*t_k**3 + C6*math.log(t_k)
        else:
            # Eq 5 (ASHRAE 2017) - Renamed from Eq 6 in older versions
            C7 = -5.6745359E+03
            C8 = 6.3925247E+00
            C9 = -9.6778430E-03
            C10 = 6.2215701E-07
            C11 = 2.0747825E-09
            C12 = -9.4840240E-13
            C13 = 4.1635019E+00
            ln_p_ws = C7/t_k + C8 + C9*t_k + C10*t_k**2 + C11*t_k**3 + C12*t_k**4 + C13*math.log(t_k)

        p_ws = math.exp(ln_p_ws)
        return p_ws

    @staticmethod
    def humidity_ratio(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate humidity ratio (mass of water vapor per unit mass of dry air).
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 20, 12.
        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity (0-100)
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
        Returns:
            Humidity ratio in kg water vapor / kg dry air
        """
        Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
        rh_decimal = max(0.0, min(1.0, rh / 100.0)) # Clamp RH
        p_ws = Psychrometrics.saturation_pressure(t_db)
        p_w = rh_decimal * p_ws # Eq 12

        # Check if partial pressure exceeds atmospheric pressure (physically impossible)
        if p_w >= p_atm:
            # This usually indicates very high temp or incorrect pressure
            logger.warning(f"Calculated partial pressure {p_w:.1f} Pa >= atmospheric pressure {p_atm:.1f} Pa at T={t_db}°C, RH={rh}%. Clamping humidity ratio.")
            # Return saturation humidity ratio at p_atm (boiling point)
            p_w_sat_at_p_atm = p_atm # Water boils when p_ws = p_atm
            w = 0.621945 * p_w_sat_at_p_atm / (p_atm - p_w_sat_at_p_atm + 1e-9) # Add small epsilon to avoid division by zero
            return w
            # raise ValueError(f"Partial pressure {p_w:.1f} Pa cannot exceed atmospheric pressure {p_atm:.1f} Pa")

        # Eq 20
        w = 0.621945 * p_w / (p_atm - p_w)
        return max(0.0, w) # Ensure non-negative

    @staticmethod
    def relative_humidity(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate relative humidity from humidity ratio.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 22, 12.
        Args:
            t_db: Dry-bulb temperature in °C
            w: Humidity ratio in kg water vapor / kg dry air
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
        Returns:
            Relative humidity (0-100)
        """
        Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
        w = max(0.0, w) # Ensure non-negative
        p_ws = Psychrometrics.saturation_pressure(t_db)

        # Eq 22 (Rearranged from Eq 20)
        p_w = p_atm * w / (0.621945 + w)

        if p_ws <= 0:
             # Avoid division by zero at very low temperatures
             return 0.0

        # Eq 12 (Definition of RH)
        rh = 100.0 * p_w / p_ws
        return max(0.0, min(100.0, rh)) # Clamp RH between 0 and 100

    @staticmethod
    def wet_bulb_temperature(t_db: float, rh: Optional[float] = None, w: Optional[float] = None,
                           p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate wet-bulb temperature using an iterative method or direct formula if applicable.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 33, 35.
        Stull, R. (2011). "Wet-Bulb Temperature from Relative Humidity and Air Temperature". Journal of Applied Meteorology and Climatology.

        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity (0-100) (either rh or w must be provided)
            w: Humidity ratio (kg/kg) (either rh or w must be provided)
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
        Returns:
            Wet-bulb temperature in °C
        """
        if rh is None and w is None:
            raise ValueError("Either relative humidity (rh) or humidity ratio (w) must be provided.")
        if rh is not None:
            Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
            w_actual = Psychrometrics.humidity_ratio(t_db, rh, p_atm)
        elif w is not None:
            Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
            w_actual = w
        else:
             raise ValueError("Calculation error in wet_bulb_temperature input handling.") # Should not happen

        # --- Using Stull's empirical formula (approximation) --- #
        # Provides a good initial guess or can be used directly for moderate accuracy
        try:
            rh_actual = Psychrometrics.relative_humidity(t_db, w_actual, p_atm)
            rh_decimal = rh_actual / 100.0
            t_wb_stull = (t_db * math.atan(0.151977 * (rh_actual + 8.313659)**0.5) +
                          math.atan(t_db + rh_actual) -
                          math.atan(rh_actual - 1.676331) +
                          0.00391838 * (rh_actual**1.5) * math.atan(0.023101 * rh_actual) -
                          4.686035)
            # Check if Stull's result is reasonable (e.g., t_wb <= t_db)
            if t_wb_stull <= t_db and abs(t_wb_stull - t_db) < 50: # Basic sanity check
                 # Use Stull's value as a very good starting point for iteration
                 t_wb_guess = t_wb_stull
            else:
                 t_wb_guess = t_db * 0.8 # Fallback guess
        except Exception:
             t_wb_guess = t_db * 0.8 # Fallback guess if Stull's formula fails

        # --- Iterative solution based on ASHRAE Eq 33/35 --- #
        t_wb = t_wb_guess
        max_iterations = 100
        tolerance_w = 1e-7 # Tolerance on humidity ratio

        for i in range(max_iterations):
            # Saturation humidity ratio at current guess of t_wb
            p_ws_wb = Psychrometrics.saturation_pressure(t_wb)
            w_s_wb = 0.621945 * p_ws_wb / (p_atm - p_ws_wb)
            w_s_wb = max(0.0, w_s_wb)

            # Humidity ratio calculated from energy balance (Eq 33/35 rearranged)
            # Using simplified specific heats for this iterative approach
            c_pa = 1006  # J/(kg·K)
            c_pw = 1860 # J/(kg·K)
            h_fg_wb = Psychrometrics.latent_heat_of_vaporization(t_wb) # J/kg

            # Eq 35 rearranged to find W based on Tdb, Twb, Ws_wb
            numerator = (c_pa + w_s_wb * c_pw) * t_wb - c_pa * t_db
            denominator = (c_pa + w_s_wb * c_pw) * t_wb - (c_pw * t_db + h_fg_wb)
            # Avoid division by zero if denominator is close to zero
            if abs(denominator) < 1e-6:
                 # This might happen near saturation, check if w_actual is close to w_s_wb
                 if abs(w_actual - w_s_wb) < tolerance_w * 10:
                      break # Converged near saturation
                 else:
                      # Adjust guess differently if denominator is zero
                      t_wb -= 0.05 * (1 if w_s_wb > w_actual else -1)
                      continue

            w_calc_from_wb = w_s_wb + numerator / denominator

            # Check convergence
            if abs(w_actual - w_calc_from_wb) < tolerance_w:
                break

            # Adjust wet-bulb temperature guess (simple step adjustment)
            # A more sophisticated root-finding method (like Newton-Raphson) could be used here
            step = 0.1 # Initial step size
            if i > 10: step = 0.01 # Smaller steps later
            if i > 50: step = 0.001

            if w_calc_from_wb > w_actual:
                t_wb -= step # Calculated W is too high, need lower Twb
            else:
                t_wb += step # Calculated W is too low, need higher Twb

            # Ensure t_wb doesn't exceed t_db
            t_wb = min(t_wb, t_db)

        else:
            # If loop finishes without break, convergence failed
            logger.warning(f"Wet bulb calculation did not converge after {max_iterations} iterations for Tdb={t_db}, W={w_actual:.6f}. Result: {t_wb:.3f}")

        # Ensure Twb <= Tdb
        return min(t_wb, t_db)

    @staticmethod
    def dew_point_temperature(t_db: Optional[float] = None, rh: Optional[float] = None,
                              w: Optional[float] = None, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate dew point temperature.
        Uses the relationship Tdp = T(Pw) where Pw is partial pressure.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equations 5, 6, 37.
        Args:
            t_db: Dry-bulb temperature in °C (required if rh is given)
            rh: Relative humidity (0-100) (either rh or w must be provided)
            w: Humidity ratio (kg/kg) (either rh or w must be provided)
            p_atm: Atmospheric pressure in Pa (required if w is given)
        Returns:
            Dew point temperature in °C
        """
        if rh is None and w is None:
            raise ValueError("Either relative humidity (rh) or humidity ratio (w) must be provided.")

        if rh is not None:
            if t_db is None:
                 raise ValueError("Dry-bulb temperature (t_db) must be provided if relative humidity (rh) is given.")
            Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm)
            rh_decimal = max(0.0, min(1.0, rh / 100.0))
            p_ws = Psychrometrics.saturation_pressure(t_db)
            p_w = rh_decimal * p_ws
        elif w is not None:
            Psychrometrics.validate_inputs(w=w, p_atm=p_atm)
            w = max(0.0, w)
            # Eq 22 (Rearranged from Eq 20)
            p_w = p_atm * w / (0.621945 + w)
        else:
             raise ValueError("Calculation error in dew_point_temperature input handling.") # Should not happen

        if p_w <= 0:
             # Handle case of zero humidity
             return -100.0 # Or some other indicator of very dry air

        # Find temperature at which saturation pressure equals partial pressure p_w
        # This requires inverting the saturation pressure formula (Eq 5/6)
        # Using iterative approach or approximation formula (like Magnus formula or ASHRAE Eq 37/38)

        # Using ASHRAE 2017 Eq 37 & 38 (approximation)
        alpha = math.log(p_w / 610.71) # Note: ASHRAE uses Pw in Pa, but older formulas used kPa. Using Pa here. Ref: Eq 3/4

        # Eq 38 for Tdp >= 0
        t_dp_pos = (18.678 - alpha / 234.5) * alpha / (257.14 + alpha / 234.5 * alpha)
        # Eq 37 for Tdp < 0
        t_dp_neg = 6.09 + 12.608 * alpha + 0.4959 * alpha**2 # This seems less accurate based on testing

        # Alternative Magnus formula approximation (often used):
        # Constants for Magnus formula (approximation)
        # A = 17.625
        # B = 243.04
        # gamma = math.log(rh_decimal) + (A * t_db) / (B + t_db)
        # t_dp_magnus = (B * gamma) / (A - gamma)

        # Iterative approach for higher accuracy (finding T such that Pws(T) = Pw)
        # Start guess near Tdb or using approximation
        t_dp_guess = t_dp_pos # Use ASHRAE approximation as starting point
        max_iterations = 20
        tolerance_p = 0.1 # Pa tolerance

        for i in range(max_iterations):
            p_ws_at_guess = Psychrometrics.saturation_pressure(t_dp_guess)
            error = p_w - p_ws_at_guess

            if abs(error) < tolerance_p:
                break

            # Estimate derivative d(Pws)/dT (Clausius-Clapeyron approximation)
            # L = Psychrometrics.latent_heat_of_vaporization(t_dp_guess)
            # Rv = GAS_CONSTANT_WATER_VAPOR
            # T_k = t_dp_guess + 273.15
            # dP_dT = (p_ws_at_guess * L) / (Rv * T_k**2)
            # A simpler approximation for derivative:
            p_ws_plus = Psychrometrics.saturation_pressure(t_dp_guess + 0.01)
            dP_dT = (p_ws_plus - p_ws_at_guess) / 0.01

            if abs(dP_dT) < 1e-3: # Avoid division by small number if derivative is near zero
                 break

            # Newton-Raphson step
            t_dp_guess += error / dP_dT
        else:
             logger.debug(f"Dew point iteration did not fully converge for Pw={p_w:.2f} Pa. Result: {t_dp_guess:.3f}")

        return t_dp_guess

    @staticmethod
    def latent_heat_of_vaporization(t_db: float) -> float:
        """
        Calculate latent heat of vaporization of water at a given temperature.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 2.
        Args:
            t_db: Dry-bulb temperature in °C
        Returns:
            Latent heat of vaporization (h_fg) in J/kg
        """
        # Eq 2 (Approximation)
        h_fg = (2501 - 2.361 * t_db) * 1000 # Convert kJ/kg to J/kg
        return h_fg

    @staticmethod
    def enthalpy(t_db: float, w: float) -> float:
        """
        Calculate specific enthalpy of moist air.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30.
        Datum: 0 J/kg for dry air at 0°C, 0 J/kg for saturated liquid water at 0°C.
        Args:
            t_db: Dry-bulb temperature in °C
            w: Humidity ratio in kg water vapor / kg dry air
        Returns:
            Specific enthalpy in J/kg dry air
        """
        Psychrometrics.validate_inputs(t_db=t_db, w=w)
        w = max(0.0, w)

        # Using more accurate specific heats if needed, but ASHRAE Eq 30 uses constants:
        c_pa = 1006      # Specific heat of dry air in J/(kg·K)
        h_g0 = 2501000   # Enthalpy of water vapor at 0°C in J/kg
        c_pw = 1860      # Specific heat of water vapor in J/(kg·K)

        # Eq 30
        h = c_pa * t_db + w * (h_g0 + c_pw * t_db)
        return h

    @staticmethod
    def specific_volume(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate specific volume of moist air.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 26.
        Args:
            t_db: Dry-bulb temperature in °C
            w: Humidity ratio in kg water vapor / kg dry air
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
        Returns:
            Specific volume in m³/kg dry air
        """
        Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
        w = max(0.0, w)
        t_k = t_db + 273.15
        r_da = GAS_CONSTANT_DRY_AIR

        # Eq 26 (Ideal Gas Law for moist air)
        # Factor 1.607858 is Ratio of MW_air / MW_water approx (28.9645 / 18.01534)
        v = (r_da * t_k / p_atm) * (1 + 1.607858 * w)
        return v

    @staticmethod
    def density(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate density of moist air.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, derived from Equation 26.
        Density = Mass / Volume = (Mass Dry Air + Mass Water Vapor) / Volume
                = (1 + w) / specific_volume
        Args:
            t_db: Dry-bulb temperature in °C
            w: Humidity ratio in kg water vapor / kg dry air
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
        Returns:
            Density in kg moist air / m³
        """
        Psychrometrics.validate_inputs(t_db=t_db, w=w, p_atm=p_atm)
        w = max(0.0, w)
        v = Psychrometrics.specific_volume(t_db, w, p_atm) # m³/kg dry air
        if v <= 0:
             raise ValueError("Calculated specific volume is non-positive, cannot calculate density.")
        # Density = mass_total / volume = (mass_dry_air + mass_water) / volume
        # Since v = volume / mass_dry_air, then density = (1 + w) / v
        rho = (1 + w) / v
        return rho

    # --- Comprehensive Property Calculation (Preserved) --- #
    @staticmethod
    def moist_air_properties(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE,
                             altitude: Optional[float] = None) -> Dict[str, float]:
        """
        Calculate all psychrometric properties of moist air.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1.
        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity (0-100)
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure).
                   If altitude is provided, p_atm is calculated and this value is ignored.
            altitude: Altitude in meters (optional). If provided, calculates pressure at altitude.
        Returns:
            Dictionary with all psychrometric properties.
        """
        if altitude is not None:
            p_atm_calc = Psychrometrics.pressure_at_altitude(altitude)
            logger.debug(f"Calculated pressure at altitude {altitude}m: {p_atm_calc:.0f} Pa")
            p_atm_used = p_atm_calc
        else:
            p_atm_used = p_atm

        Psychrometrics.validate_inputs(t_db=t_db, rh=rh, p_atm=p_atm_used)
        rh_clamped = max(0.0, min(100.0, rh))

        w = Psychrometrics.humidity_ratio(t_db, rh_clamped, p_atm_used)
        t_wb = Psychrometrics.wet_bulb_temperature(t_db, rh=rh_clamped, w=w, p_atm=p_atm_used)
        t_dp = Psychrometrics.dew_point_temperature(t_db=t_db, rh=rh_clamped, w=w, p_atm=p_atm_used)
        h = Psychrometrics.enthalpy(t_db, w)
        v = Psychrometrics.specific_volume(t_db, w, p_atm_used)
        rho = Psychrometrics.density(t_db, w, p_atm_used)
        p_ws = Psychrometrics.saturation_pressure(t_db)
        p_w = (rh_clamped / 100.0) * p_ws

        return {
            "dry_bulb_temperature_c": t_db,
            "wet_bulb_temperature_c": t_wb,
            "dew_point_temperature_c": t_dp,
            "relative_humidity_percent": rh_clamped,
            "humidity_ratio_kg_kg": w,
            "enthalpy_j_kg": h,
            "specific_volume_m3_kg": v,
            "density_kg_m3": rho,
            "saturation_pressure_pa": p_ws,
            "partial_pressure_pa": p_w,
            "atmospheric_pressure_pa": p_atm_used
        }

    # --- Inverse Functions (Preserved) --- #
    @staticmethod
    def find_humidity_ratio_for_enthalpy(t_db: float, h: float) -> float:
        """
        Find humidity ratio for a given dry-bulb temperature and enthalpy.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30 (rearranged).
        Args:
            t_db: Dry-bulb temperature in °C
            h: Specific enthalpy in J/kg dry air
        Returns:
            Humidity ratio in kg water vapor / kg dry air
        """
        Psychrometrics.validate_inputs(t_db=t_db, h=h)
        c_pa = 1006
        h_g0 = 2501000
        c_pw = 1860
        denominator = (h_g0 + c_pw * t_db)
        if abs(denominator) < 1e-6:
             # Avoid division by zero, happens at specific low temps where denominator is zero
             logger.warning(f"Denominator near zero in find_humidity_ratio_for_enthalpy at Tdb={t_db}. Enthalpy {h} may be inconsistent.")
             return 0.0 # Or raise error
        w = (h - c_pa * t_db) / denominator
        return max(0.0, w) # Humidity ratio cannot be negative

    @staticmethod
    def find_temperature_for_enthalpy(w: float, h: float) -> float:
        """
        Find dry-bulb temperature for a given humidity ratio and enthalpy.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30 (rearranged).
        Args:
            w: Humidity ratio in kg water vapor / kg dry air
            h: Specific enthalpy in J/kg dry air
        Returns:
            Dry-bulb temperature in °C
        """
        Psychrometrics.validate_inputs(w=w, h=h)
        w = max(0.0, w)
        c_pa = 1006
        h_g0 = 2501000
        c_pw = 1860
        denominator = (c_pa + w * c_pw)
        if abs(denominator) < 1e-6:
             raise ValueError(f"Cannot calculate temperature: denominator (Cp_a + w*Cp_w) is near zero for w={w}")
        t_db = (h - w * h_g0) / denominator
        # Validate the result is within reasonable bounds
        Psychrometrics.validate_inputs(t_db=t_db)
        return t_db

    # --- Heat Ratio and Flow Rate (Preserved) --- #
    @staticmethod
    def sensible_heat_ratio(q_sensible: float, q_total: float) -> float:
        """
        Calculate sensible heat ratio (SHR).
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.5.
        Args:
            q_sensible: Sensible heat load in W (can be negative for cooling)
            q_total: Total heat load in W (sensible + latent) (can be negative for cooling)
        Returns:
            Sensible heat ratio (typically 0 to 1 for cooling, can be >1 or <0 in some cases)
        """
        if abs(q_total) < 1e-9: # Avoid division by zero
            # If total load is zero, SHR is undefined or can be considered 1 if only sensible exists
            return 1.0 if abs(q_sensible) < 1e-9 else (1.0 if q_sensible > 0 else -1.0) # Or np.nan
        shr = q_sensible / q_total
        return shr

    @staticmethod
    def air_flow_rate_for_load(q_sensible: float, delta_t: float,
                               rho: Optional[float] = None, cp: float = 1006,
                               altitude: Optional[float] = None) -> float:
        """
        Calculate volumetric air flow rate required to meet a sensible load.
        Formula: q_sensible = m_dot * cp * delta_t = (rho * V_dot) * cp * delta_t
                 V_dot = q_sensible / (rho * cp * delta_t)
        Args:
            q_sensible: Sensible heat load in W.
            delta_t: Temperature difference between supply and return air in °C (or K).
            rho: Density of air in kg/m³ (optional, will use standard density if None).
            cp: Specific heat of air in J/(kg·K) (default: 1006).
            altitude: Altitude in meters (optional, used to estimate density if rho is None).
        Returns:
            Volumetric air flow rate (V_dot) in m³/s.
        """
        if abs(delta_t) < 1e-6:
            raise ValueError("Delta T cannot be zero for air flow rate calculation.")

        if rho is None:
            # Estimate density based on typical conditions or altitude
            if altitude is not None:
                 p_atm_alt = Psychrometrics.pressure_at_altitude(altitude)
                 # Assume typical indoor conditions for density calculation
                 rho = Psychrometrics.density(t_db=22, w=0.008, p_atm=p_atm_alt)
            else:
                 # Use standard sea level density as approximation
                 rho = Psychrometrics.density(t_db=20, w=0.0075) # Approx 1.2 kg/m³
            logger.debug(f"Using estimated air density: {rho:.3f} kg/m³")

        if rho <= 0:
             raise ValueError("Air density must be positive.")

        v_dot = q_sensible / (rho * cp * delta_t)
        return v_dot

    # --- Air Mixing Function (Added based on plan) --- #
    @staticmethod
    def mix_air_streams(stream1: Dict[str, float], stream2: Dict[str, float],
                        p_atm: float = ATMOSPHERIC_PRESSURE) -> Dict[str, float]:
        """
        Calculate the properties of a mixture of two moist air streams.
        Assumes adiabatic mixing at constant pressure.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.4.

        Args:
            stream1: Dict for stream 1 containing keys: 'flow_rate' (m³/s), 't_db' (°C), 'rh' (%) OR 'w' (kg/kg).
            stream2: Dict for stream 2 containing keys: 'flow_rate' (m³/s), 't_db' (°C), 'rh' (%) OR 'w' (kg/kg).
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure).

        Returns:
            Dictionary with properties of the mixed stream: 't_db', 'w', 'rh', 'h', 'flow_rate'.
        Raises:
            ValueError: If input dictionaries are missing required keys or have invalid values.
        """

        # Validate inputs and get full properties for each stream
        props1 = {}
        props2 = {}
        try:
            t_db1 = stream1['t_db']
            flow1 = stream1['flow_rate']
            if 'rh' in stream1:
                props1 = Psychrometrics.moist_air_properties(t_db1, stream1['rh'], p_atm)
            elif 'w' in stream1:
                w1 = stream1['w']
                Psychrometrics.validate_inputs(t_db=t_db1, w=w1, p_atm=p_atm)
                props1 = Psychrometrics.moist_air_properties(t_db1, Psychrometrics.relative_humidity(t_db1, w1, p_atm), p_atm)
            else:
                raise ValueError("Stream 1 must contain 'rh' or 'w'.")
            if flow1 < 0: raise ValueError("Stream 1 flow rate cannot be negative.")
            m_dot1 = flow1 * props1['density_kg_m3'] # Mass flow rate kg/s

            t_db2 = stream2['t_db']
            flow2 = stream2['flow_rate']
            if 'rh' in stream2:
                props2 = Psychrometrics.moist_air_properties(t_db2, stream2['rh'], p_atm)
            elif 'w' in stream2:
                w2 = stream2['w']
                Psychrometrics.validate_inputs(t_db=t_db2, w=w2, p_atm=p_atm)
                props2 = Psychrometrics.moist_air_properties(t_db2, Psychrometrics.relative_humidity(t_db2, w2, p_atm), p_atm)
            else:
                raise ValueError("Stream 2 must contain 'rh' or 'w'.")
            if flow2 < 0: raise ValueError("Stream 2 flow rate cannot be negative.")
            m_dot2 = flow2 * props2['density_kg_m3'] # Mass flow rate kg/s

        except KeyError as e:
            raise ValueError(f"Missing required key in input stream dictionary: {e}")
        except ValueError as e:
            raise ValueError(f"Invalid input value: {e}")

        # Total mass flow rate
        m_dot_mix = m_dot1 + m_dot2

        if m_dot_mix <= 1e-9: # Avoid division by zero if total flow is zero
            logger.warning("Total mass flow rate for mixing is zero. Returning properties of stream 1 (or empty dict if flow1 is also zero).")
            if m_dot1 > 1e-9:
                 return {
                    't_db': props1['dry_bulb_temperature_c'],
                    'w': props1['humidity_ratio_kg_kg'],
                    'rh': props1['relative_humidity_percent'],
                    'h': props1['enthalpy_j_kg'],
                    'flow_rate': flow1
                 }
            else: # Both flows are zero
                 return {'t_db': 0, 'w': 0, 'rh': 0, 'h': 0, 'flow_rate': 0}

        # Mass balance for humidity ratio
        w_mix = (m_dot1 * props1['humidity_ratio_kg_kg'] + m_dot2 * props2['humidity_ratio_kg_kg']) / m_dot_mix

        # Energy balance for enthalpy
        h_mix = (m_dot1 * props1['enthalpy_j_kg'] + m_dot2 * props2['enthalpy_j_kg']) / m_dot_mix

        # Find mixed temperature from mixed enthalpy and humidity ratio
        t_db_mix = Psychrometrics.find_temperature_for_enthalpy(w_mix, h_mix)

        # Find mixed relative humidity
        rh_mix = Psychrometrics.relative_humidity(t_db_mix, w_mix, p_atm)

        # Calculate mixed flow rate (volume)
        # Need density at mixed conditions
        rho_mix = Psychrometrics.density(t_db_mix, w_mix, p_atm)
        flow_mix = m_dot_mix / rho_mix if rho_mix > 0 else 0

        return {
            't_db': t_db_mix,
            'w': w_mix,
            'rh': rh_mix,
            'h': h_mix,
            'flow_rate': flow_mix
        }

# Example Usage (Preserved and expanded)
if __name__ == "__main__":
    # Test basic properties
    t_db_test = 25.0
    rh_test = 50.0
    p_atm_test = 101325.0
    altitude_test = 1500 # meters

    print(f"--- Properties at T={t_db_test}°C, RH={rh_test}%, P={p_atm_test} Pa ---")
    props_sea_level = Psychrometrics.moist_air_properties(t_db_test, rh_test, p_atm_test)
    for key, value in props_sea_level.items():
        print(f"{key}: {value:.6f}")

    print(f"\n--- Properties at T={t_db_test}°C, RH={rh_test}%, Altitude={altitude_test} m ---")
    props_altitude = Psychrometrics.moist_air_properties(t_db_test, rh_test, altitude=altitude_test)
    for key, value in props_altitude.items():
        print(f"{key}: {value:.6f}")
    p_calc_alt = Psychrometrics.pressure_at_altitude(altitude_test)
    pressure_diff = abs(p_calc_alt - props_altitude["atmospheric_pressure_pa"]) < 1e-3
    print(f"Calculated pressure at {altitude_test}m: {p_calc_alt:.0f} Pa (matches: {pressure_diff})")

    # Test air mixing
    print("\n--- Air Mixing Test ---")
    stream_a = {'flow_rate': 1.0, 't_db': 30.0, 'rh': 60.0} # m³/s, °C, %
    stream_b = {'flow_rate': 0.5, 't_db': 15.0, 'w': 0.005} # m³/s, °C, kg/kg
    p_mix = 100000.0 # Pa

    print(f"Stream A: {stream_a}")
    print(f"Stream B: {stream_b}")
    print(f"Mixing at Pressure: {p_mix} Pa")

    try:
        mixed_props = Psychrometrics.mix_air_streams(stream_a, stream_b, p_atm=p_mix)
        print("\nMixed Stream Properties:")
        for key, value in mixed_props.items():
            print(f"{key}: {value:.6f}")
    except ValueError as e:
        print(f"\nError during mixing calculation: {e}")

    # Test edge cases
    print("\n--- Edge Case Tests ---")
    try:
        print(f"Dew point at 5°C, 100% RH: {Psychrometrics.dew_point_temperature(t_db=5.0, rh=100.0):.3f}°C")
        print(f"Dew point at -10°C, 80% RH: {Psychrometrics.dew_point_temperature(t_db=-10.0, rh=80.0):.3f}°C")
        print(f"Wet bulb at 30°C, 100% RH: {Psychrometrics.wet_bulb_temperature(t_db=30.0, rh=100.0):.3f}°C")
        print(f"Wet bulb at -5°C, 50% RH: {Psychrometrics.wet_bulb_temperature(t_db=-5.0, rh=50.0):.3f}°C")
        # Test high temp / high humidity
        props_hot_humid = Psychrometrics.moist_air_properties(t_db=50, rh=90, p_atm=101325)
        humidity_ratio = props_hot_humid["humidity_ratio_kg_kg"]
        enthalpy = props_hot_humid["enthalpy_j_kg"]
        print(f"Properties at 50°C, 90% RH: W={humidity_ratio:.6f}, H={enthalpy:.0f}")
    except ValueError as e:
        print(f"Error during edge case test: {e}")