File size: 26,409 Bytes
845939b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
"""
Time-based visualization module for HVAC Load Calculator.
This module provides visualization tools for time-based load analysis.
"""

import streamlit as st
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from typing import Dict, List, Any, Optional, Tuple
import math
import calendar
from datetime import datetime, timedelta


class TimeBasedVisualization:
    """Class for time-based visualization."""
    
    @staticmethod
    def create_hourly_load_profile(hourly_loads: Dict[str, List[float]], 
                                  date: str = "Jul 15") -> go.Figure:
        """
        Create an hourly load profile chart.
        
        Args:
            hourly_loads: Dictionary with hourly load data
            date: Date for the profile (e.g., "Jul 15")
            
        Returns:
            Plotly figure with hourly load profile
        """
        # Create hour labels
        hours = list(range(24))
        hour_labels = [f"{h}:00" for h in hours]
        
        # Create figure
        fig = go.Figure()
        
        # Add total load trace
        if "total" in hourly_loads:
            fig.add_trace(go.Scatter(
                x=hour_labels,
                y=hourly_loads["total"],
                mode="lines+markers",
                name="Total Load",
                line=dict(color="rgba(55, 83, 109, 1)", width=3),
                marker=dict(size=8)
            ))
        
        # Add component load traces
        for component, loads in hourly_loads.items():
            if component == "total":
                continue
            
            # Format component name for display
            display_name = component.replace("_", " ").title()
            
            fig.add_trace(go.Scatter(
                x=hour_labels,
                y=loads,
                mode="lines+markers",
                name=display_name,
                marker=dict(size=6),
                line=dict(width=2)
            ))
        
        # Update layout
        fig.update_layout(
            title=f"Hourly Load Profile ({date})",
            xaxis_title="Hour of Day",
            yaxis_title="Load (W)",
            height=500,
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1
            ),
            hovermode="x unified"
        )
        
        return fig
    
    @staticmethod
    def create_daily_load_profile(daily_loads: Dict[str, List[float]], 
                                 month: str = "July") -> go.Figure:
        """
        Create a daily load profile chart for a month.
        
        Args:
            daily_loads: Dictionary with daily load data
            month: Month name
            
        Returns:
            Plotly figure with daily load profile
        """
        # Get number of days in month
        month_num = list(calendar.month_name).index(month)
        year = datetime.now().year
        num_days = calendar.monthrange(year, month_num)[1]
        
        # Create day labels
        days = list(range(1, num_days + 1))
        day_labels = [f"{d}" for d in days]
        
        # Create figure
        fig = go.Figure()
        
        # Add total load trace
        if "total" in daily_loads:
            fig.add_trace(go.Scatter(
                x=day_labels,
                y=daily_loads["total"][:num_days],
                mode="lines+markers",
                name="Total Load",
                line=dict(color="rgba(55, 83, 109, 1)", width=3),
                marker=dict(size=8)
            ))
        
        # Add component load traces
        for component, loads in daily_loads.items():
            if component == "total":
                continue
            
            # Format component name for display
            display_name = component.replace("_", " ").title()
            
            fig.add_trace(go.Scatter(
                x=day_labels,
                y=loads[:num_days],
                mode="lines+markers",
                name=display_name,
                marker=dict(size=6),
                line=dict(width=2)
            ))
        
        # Update layout
        fig.update_layout(
            title=f"Daily Load Profile ({month})",
            xaxis_title="Day of Month",
            yaxis_title="Load (W)",
            height=500,
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1
            ),
            hovermode="x unified"
        )
        
        return fig
    
    @staticmethod
    def create_monthly_load_comparison(monthly_loads: Dict[str, List[float]],
                                      load_type: str = "cooling") -> go.Figure:
        """
        Create a monthly load comparison chart.
        
        Args:
            monthly_loads: Dictionary with monthly load data
            load_type: Type of load ("cooling" or "heating")
            
        Returns:
            Plotly figure with monthly load comparison
        """
        # Create month labels
        months = list(calendar.month_name)[1:]
        
        # Create figure
        fig = go.Figure()
        
        # Add total load bars
        if "total" in monthly_loads:
            fig.add_trace(go.Bar(
                x=months,
                y=monthly_loads["total"],
                name="Total Load",
                marker_color="rgba(55, 83, 109, 0.7)",
                opacity=0.7
            ))
        
        # Add component load bars
        for component, loads in monthly_loads.items():
            if component == "total":
                continue
            
            # Format component name for display
            display_name = component.replace("_", " ").title()
            
            fig.add_trace(go.Bar(
                x=months,
                y=loads,
                name=display_name,
                visible="legendonly"
            ))
        
        # Update layout
        title = f"Monthly {load_type.title()} Load Comparison"
        y_title = f"{load_type.title()} Load (kWh)"
        
        fig.update_layout(
            title=title,
            xaxis_title="Month",
            yaxis_title=y_title,
            height=500,
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1
            ),
            hovermode="x unified"
        )
        
        return fig
    
    @staticmethod
    def create_annual_load_distribution(annual_loads: Dict[str, float],
                                       load_type: str = "cooling") -> go.Figure:
        """
        Create an annual load distribution pie chart.
        
        Args:
            annual_loads: Dictionary with annual load data by component
            load_type: Type of load ("cooling" or "heating")
            
        Returns:
            Plotly figure with annual load distribution
        """
        # Extract components and values
        components = []
        values = []
        
        for component, load in annual_loads.items():
            if component == "total":
                continue
            
            # Format component name for display
            display_name = component.replace("_", " ").title()
            components.append(display_name)
            values.append(load)
        
        # Create pie chart
        fig = go.Figure(data=[go.Pie(
            labels=components,
            values=values,
            hole=0.3,
            textinfo="label+percent",
            insidetextorientation="radial"
        )])
        
        # Update layout
        title = f"Annual {load_type.title()} Load Distribution"
        
        fig.update_layout(
            title=title,
            height=500,
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1
            )
        )
        
        return fig
    
    @staticmethod
    def create_peak_load_analysis(peak_loads: Dict[str, Dict[str, Any]],
                                 load_type: str = "cooling") -> go.Figure:
        """
        Create a peak load analysis chart.
        
        Args:
            peak_loads: Dictionary with peak load data
            load_type: Type of load ("cooling" or "heating")
            
        Returns:
            Plotly figure with peak load analysis
        """
        # Extract peak load data
        components = []
        values = []
        times = []
        
        for component, data in peak_loads.items():
            if component == "total":
                continue
            
            # Format component name for display
            display_name = component.replace("_", " ").title()
            components.append(display_name)
            values.append(data["value"])
            times.append(data["time"])
        
        # Create bar chart
        fig = go.Figure(data=[go.Bar(
            x=components,
            y=values,
            text=times,
            textposition="auto",
            hovertemplate="<b>%{x}</b><br>Peak Load: %{y:.0f} W<br>Time: %{text}<extra></extra>"
        )])
        
        # Update layout
        title = f"Peak {load_type.title()} Load Analysis"
        y_title = f"Peak {load_type.title()} Load (W)"
        
        fig.update_layout(
            title=title,
            xaxis_title="Component",
            yaxis_title=y_title,
            height=500
        )
        
        return fig
    
    @staticmethod
    def create_load_duration_curve(hourly_loads: List[float],
                                  load_type: str = "cooling") -> go.Figure:
        """
        Create a load duration curve.
        
        Args:
            hourly_loads: List of hourly loads for the year
            load_type: Type of load ("cooling" or "heating")
            
        Returns:
            Plotly figure with load duration curve
        """
        # Sort loads in descending order
        sorted_loads = sorted(hourly_loads, reverse=True)
        
        # Create hour indices
        hours = list(range(1, len(sorted_loads) + 1))
        
        # Create figure
        fig = go.Figure(data=[go.Scatter(
            x=hours,
            y=sorted_loads,
            mode="lines",
            line=dict(color="rgba(55, 83, 109, 1)", width=2),
            fill="tozeroy",
            fillcolor="rgba(55, 83, 109, 0.2)"
        )])
        
        # Update layout
        title = f"{load_type.title()} Load Duration Curve"
        x_title = "Hours"
        y_title = f"{load_type.title()} Load (W)"
        
        fig.update_layout(
            title=title,
            xaxis_title=x_title,
            yaxis_title=y_title,
            height=500,
            xaxis=dict(
                type="log",
                range=[0, math.log10(len(hours))]
            )
        )
        
        return fig
    
    @staticmethod
    def create_heat_map(hourly_data: List[List[float]],
                       x_labels: List[str],
                       y_labels: List[str],
                       title: str,
                       colorscale: str = "Viridis") -> go.Figure:
        """
        Create a heat map visualization.
        
        Args:
            hourly_data: 2D list of hourly data
            x_labels: Labels for x-axis
            y_labels: Labels for y-axis
            title: Chart title
            colorscale: Colorscale for the heatmap
            
        Returns:
            Plotly figure with heat map
        """
        # Create figure
        fig = go.Figure(data=go.Heatmap(
            z=hourly_data,
            x=x_labels,
            y=y_labels,
            colorscale=colorscale,
            colorbar=dict(title="Load (W)")
        ))
        
        # Update layout
        fig.update_layout(
            title=title,
            height=600,
            xaxis=dict(
                title="Hour of Day",
                tickmode="array",
                tickvals=list(range(0, 24, 2)),
                ticktext=[f"{h}:00" for h in range(0, 24, 2)]
            ),
            yaxis=dict(
                title="Day",
                autorange="reversed"
            )
        )
        
        return fig
    
    @staticmethod
    def display_time_based_visualization(cooling_loads: Dict[str, Any] = None,
                                        heating_loads: Dict[str, Any] = None) -> None:
        """
        Display time-based visualization in Streamlit.
        
        Args:
            cooling_loads: Dictionary with cooling load data
            heating_loads: Dictionary with heating load data
        """
        st.header("Time-Based Visualization")
        
        # Check if load data exists
        if cooling_loads is None and heating_loads is None:
            st.warning("No load data available for visualization.")
            
            # Create sample data for demonstration
            st.info("Using sample data for demonstration.")
            
            # Generate sample cooling loads
            cooling_loads = {
                "hourly": {
                    "total": [1000 + 500 * math.sin(h * math.pi / 12) + 1000 * math.sin(h * math.pi / 6) for h in range(24)],
                    "walls": [300 + 150 * math.sin(h * math.pi / 12) for h in range(24)],
                    "roofs": [400 + 200 * math.sin(h * math.pi / 12) for h in range(24)],
                    "windows": [500 + 300 * math.sin(h * math.pi / 6) for h in range(24)],
                    "internal": [200 + 100 * math.sin(h * math.pi / 8) for h in range(24)]
                },
                "daily": {
                    "total": [2000 + 1000 * math.sin(d * math.pi / 15) for d in range(1, 32)],
                    "walls": [600 + 300 * math.sin(d * math.pi / 15) for d in range(1, 32)],
                    "roofs": [800 + 400 * math.sin(d * math.pi / 15) for d in range(1, 32)],
                    "windows": [1000 + 500 * math.sin(d * math.pi / 15) for d in range(1, 32)]
                },
                "monthly": {
                    "total": [1000, 1200, 1500, 2000, 2500, 3000, 3500, 3200, 2800, 2000, 1500, 1200],
                    "walls": [300, 350, 400, 500, 600, 700, 800, 750, 650, 500, 400, 350],
                    "roofs": [400, 450, 500, 600, 700, 800, 900, 850, 750, 600, 500, 450],
                    "windows": [500, 550, 600, 700, 800, 900, 1000, 950, 850, 700, 600, 550]
                },
                "annual": {
                    "total": 25000,
                    "walls": 6000,
                    "roofs": 8000,
                    "windows": 9000,
                    "internal": 2000
                },
                "peak": {
                    "total": {"value": 3500, "time": "Jul 15, 15:00"},
                    "walls": {"value": 800, "time": "Jul 15, 16:00"},
                    "roofs": {"value": 900, "time": "Jul 15, 14:00"},
                    "windows": {"value": 1000, "time": "Jul 15, 15:00"},
                    "internal": {"value": 200, "time": "Jul 15, 17:00"}
                }
            }
            
            # Generate sample heating loads
            heating_loads = {
                "hourly": {
                    "total": [3000 - 1000 * math.sin(h * math.pi / 12) for h in range(24)],
                    "walls": [900 - 300 * math.sin(h * math.pi / 12) for h in range(24)],
                    "roofs": [1200 - 400 * math.sin(h * math.pi / 12) for h in range(24)],
                    "windows": [1500 - 500 * math.sin(h * math.pi / 12) for h in range(24)]
                },
                "daily": {
                    "total": [3000 - 1000 * math.sin(d * math.pi / 15) for d in range(1, 32)],
                    "walls": [900 - 300 * math.sin(d * math.pi / 15) for d in range(1, 32)],
                    "roofs": [1200 - 400 * math.sin(d * math.pi / 15) for d in range(1, 32)],
                    "windows": [1500 - 500 * math.sin(d * math.pi / 15) for d in range(1, 32)]
                },
                "monthly": {
                    "total": [3500, 3200, 2800, 2000, 1500, 1000, 800, 1000, 1500, 2000, 2800, 3500],
                    "walls": [1050, 960, 840, 600, 450, 300, 240, 300, 450, 600, 840, 1050],
                    "roofs": [1400, 1280, 1120, 800, 600, 400, 320, 400, 600, 800, 1120, 1400],
                    "windows": [1750, 1600, 1400, 1000, 750, 500, 400, 500, 750, 1000, 1400, 1750]
                },
                "annual": {
                    "total": 25000,
                    "walls": 7500,
                    "roofs": 10000,
                    "windows": 12500,
                    "infiltration": 5000
                },
                "peak": {
                    "total": {"value": 3500, "time": "Jan 15, 06:00"},
                    "walls": {"value": 1050, "time": "Jan 15, 06:00"},
                    "roofs": {"value": 1400, "time": "Jan 15, 06:00"},
                    "windows": {"value": 1750, "time": "Jan 15, 06:00"},
                    "infiltration": {"value": 500, "time": "Jan 15, 06:00"}
                }
            }
        
        # Create tabs for different visualizations
        tab1, tab2, tab3, tab4, tab5 = st.tabs([
            "Hourly Profiles", 
            "Monthly Comparison", 
            "Annual Distribution", 
            "Peak Load Analysis",
            "Heat Maps"
        ])
        
        with tab1:
            st.subheader("Hourly Load Profiles")
            
            # Add load type selector
            load_type = st.radio(
                "Select Load Type",
                ["cooling", "heating"],
                horizontal=True,
                key="hourly_profile_type"
            )
            
            # Add date selector
            date = st.selectbox(
                "Select Date",
                ["Jan 15", "Apr 15", "Jul 15", "Oct 15"],
                index=2,
                key="hourly_profile_date"
            )
            
            # Get appropriate load data
            if load_type == "cooling":
                hourly_data = cooling_loads.get("hourly", {})
            else:
                hourly_data = heating_loads.get("hourly", {})
            
            # Create and display chart
            fig = TimeBasedVisualization.create_hourly_load_profile(hourly_data, date)
            st.plotly_chart(fig, use_container_width=True)
            
            # Add daily profile option
            st.subheader("Daily Load Profiles")
            
            # Add month selector
            month = st.selectbox(
                "Select Month",
                list(calendar.month_name)[1:],
                index=6,  # July
                key="daily_profile_month"
            )
            
            # Get appropriate load data
            if load_type == "cooling":
                daily_data = cooling_loads.get("daily", {})
            else:
                daily_data = heating_loads.get("daily", {})
            
            # Create and display chart
            fig = TimeBasedVisualization.create_daily_load_profile(daily_data, month)
            st.plotly_chart(fig, use_container_width=True)
        
        with tab2:
            st.subheader("Monthly Load Comparison")
            
            # Add load type selector
            load_type = st.radio(
                "Select Load Type",
                ["cooling", "heating"],
                horizontal=True,
                key="monthly_comparison_type"
            )
            
            # Get appropriate load data
            if load_type == "cooling":
                monthly_data = cooling_loads.get("monthly", {})
            else:
                monthly_data = heating_loads.get("monthly", {})
            
            # Create and display chart
            fig = TimeBasedVisualization.create_monthly_load_comparison(monthly_data, load_type)
            st.plotly_chart(fig, use_container_width=True)
            
            # Add download button for CSV
            monthly_df = pd.DataFrame(monthly_data)
            monthly_df.index = list(calendar.month_name)[1:]
            
            csv = monthly_df.to_csv().encode('utf-8')
            st.download_button(
                label=f"Download Monthly {load_type.title()} Loads as CSV",
                data=csv,
                file_name=f"monthly_{load_type}_loads.csv",
                mime="text/csv"
            )
        
        with tab3:
            st.subheader("Annual Load Distribution")
            
            # Add load type selector
            load_type = st.radio(
                "Select Load Type",
                ["cooling", "heating"],
                horizontal=True,
                key="annual_distribution_type"
            )
            
            # Get appropriate load data
            if load_type == "cooling":
                annual_data = cooling_loads.get("annual", {})
            else:
                annual_data = heating_loads.get("annual", {})
            
            # Create and display chart
            fig = TimeBasedVisualization.create_annual_load_distribution(annual_data, load_type)
            st.plotly_chart(fig, use_container_width=True)
            
            # Display annual total
            total = annual_data.get("total", 0)
            st.metric(f"Total Annual {load_type.title()} Load", f"{total:,.0f} kWh")
            
            # Add download button for CSV
            annual_df = pd.DataFrame({"Component": list(annual_data.keys()), "Load (kWh)": list(annual_data.values())})
            
            csv = annual_df.to_csv(index=False).encode('utf-8')
            st.download_button(
                label=f"Download Annual {load_type.title()} Loads as CSV",
                data=csv,
                file_name=f"annual_{load_type}_loads.csv",
                mime="text/csv"
            )
        
        with tab4:
            st.subheader("Peak Load Analysis")
            
            # Add load type selector
            load_type = st.radio(
                "Select Load Type",
                ["cooling", "heating"],
                horizontal=True,
                key="peak_load_type"
            )
            
            # Get appropriate load data
            if load_type == "cooling":
                peak_data = cooling_loads.get("peak", {})
            else:
                peak_data = heating_loads.get("peak", {})
            
            # Create and display chart
            fig = TimeBasedVisualization.create_peak_load_analysis(peak_data, load_type)
            st.plotly_chart(fig, use_container_width=True)
            
            # Display peak total
            peak_total = peak_data.get("total", {}).get("value", 0)
            peak_time = peak_data.get("total", {}).get("time", "")
            
            st.metric(f"Peak {load_type.title()} Load", f"{peak_total:,.0f} W")
            st.write(f"Peak Time: {peak_time}")
            
            # Add download button for CSV
            peak_df = pd.DataFrame({
                "Component": list(peak_data.keys()),
                "Peak Load (W)": [data.get("value", 0) for data in peak_data.values()],
                "Time": [data.get("time", "") for data in peak_data.values()]
            })
            
            csv = peak_df.to_csv(index=False).encode('utf-8')
            st.download_button(
                label=f"Download Peak {load_type.title()} Loads as CSV",
                data=csv,
                file_name=f"peak_{load_type}_loads.csv",
                mime="text/csv"
            )
        
        with tab5:
            st.subheader("Heat Maps")
            
            # Add load type selector
            load_type = st.radio(
                "Select Load Type",
                ["cooling", "heating"],
                horizontal=True,
                key="heat_map_type"
            )
            
            # Add month selector
            month = st.selectbox(
                "Select Month",
                list(calendar.month_name)[1:],
                index=6,  # July
                key="heat_map_month"
            )
            
            # Generate heat map data
            month_num = list(calendar.month_name).index(month)
            year = datetime.now().year
            num_days = calendar.monthrange(year, month_num)[1]
            
            # Get appropriate hourly data
            if load_type == "cooling":
                hourly_data = cooling_loads.get("hourly", {}).get("total", [])
            else:
                hourly_data = heating_loads.get("hourly", {}).get("total", [])
            
            # Create 2D array for heat map
            heat_map_data = []
            for day in range(1, num_days + 1):
                # Generate hourly data with day-to-day variation
                day_factor = 1 + 0.2 * math.sin(day * math.pi / 15)
                day_data = [load * day_factor for load in hourly_data]
                heat_map_data.append(day_data)
            
            # Create hour and day labels
            hour_labels = list(range(24))
            day_labels = list(range(1, num_days + 1))
            
            # Create and display heat map
            title = f"{load_type.title()} Load Heat Map ({month})"
            colorscale = "Hot" if load_type == "cooling" else "Ice"
            
            fig = TimeBasedVisualization.create_heat_map(heat_map_data, hour_labels, day_labels, title, colorscale)
            st.plotly_chart(fig, use_container_width=True)
            
            # Add explanation
            st.info(
                "The heat map shows the hourly load pattern for each day of the selected month. "
                "Darker colors indicate higher loads. This visualization helps identify peak load periods "
                "and daily/weekly patterns."
            )


# Create a singleton instance
time_based_visualization = TimeBasedVisualization()

# Example usage
if __name__ == "__main__":
    import streamlit as st
    
    # Display time-based visualization with sample data
    time_based_visualization.display_time_based_visualization()