HVAC-03 / utils /heat_transfer.py
mabuseif's picture
Upload heat_transfer.py
72815ba verified
raw
history blame
31.7 kB
"""
Heat transfer calculation module for HVAC Load Calculator.
This module implements heat transfer calculations for conduction, infiltration,
and enhanced solar radiation modeling, including vectorization support.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapters 14, 16, 18.
Duffie & Beckman, Solar Engineering of Thermal Processes (4th Ed.).
Author: Dr Majed Abuseif
Date: May 2025 (Enhanced based on plan, preserving original features)
Version: 1.3.0
"""
from typing import Dict, List, Any, Optional, Tuple, Union
import math
import numpy as np
import logging
from dataclasses import dataclass
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import utility modules (ensure these exist and are correct)
try:
from utils.psychrometrics import Psychrometrics
except ImportError:
print("Warning: Could not import Psychrometrics. Using placeholder.")
class Psychrometrics:
def humidity_ratio(self, tdb, rh, p): return 0.01
def density(self, tdb, w, p): return 1.2
def pressure_at_altitude(self, alt): return 101325
def latent_heat_of_vaporization(self, tdb): return 2501000
# Add other methods if needed by HeatTransferCalculations
# Import data modules (ensure these exist and are correct)
try:
# Assuming Orientation enum is defined elsewhere, e.g., in component selection
from app.component_selection import Orientation
except ImportError:
print("Warning: Could not import Orientation enum. Using placeholder.")
from enum import Enum
class Orientation(Enum): NORTH="N"; NORTHEAST="NE"; EAST="E"; SOUTHEAST="SE"; SOUTH="S"; SOUTHWEST="SW"; WEST="W"; NORTHWEST="NW"; HORIZONTAL="H"
# Constants
STEFAN_BOLTZMANN = 5.67e-8 # W/(m²·K⁴)
SOLAR_CONSTANT = 1367 # W/m² (Average extraterrestrial solar irradiance)
ATMOSPHERIC_PRESSURE = 101325 # Pa
GAS_CONSTANT_DRY_AIR = 287.058 # J/(kg·K)
@dataclass
class SolarAngles:
"""Holds calculated solar angles."""
declination: float # degrees
hour_angle: float # degrees
altitude: float # degrees
azimuth: float # degrees
incidence_angle: Optional[float] = None # degrees, for a specific surface
@dataclass
class SolarRadiation:
"""Holds calculated solar radiation components."""
extraterrestrial_normal: float # W/m²
direct_normal: float # W/m² (DNI)
diffuse_horizontal: float # W/m² (DHI)
global_horizontal: float # W/m² (GHI = DNI*cos(zenith) + DHI)
total_on_surface: Optional[float] = None # W/m², for a specific surface
direct_on_surface: Optional[float] = None # W/m²
diffuse_on_surface: Optional[float] = None # W/m²
reflected_on_surface: Optional[float] = None # W/m²
class SolarCalculations:
"""Class for enhanced solar geometry and radiation calculations."""
def validate_angle(self, angle: Union[float, np.ndarray], name: str, min_val: float, max_val: float) -> None:
""" Validate angle inputs for solar calculations (handles scalars and numpy arrays). """
if isinstance(angle, np.ndarray):
if np.any(angle < min_val) or np.any(angle > max_val):
logger.warning(f"{name} contains values outside range [{min_val}, {max_val}]")
# Optionally clamp values: angle = np.clip(angle, min_val, max_val)
elif not min_val <= angle <= max_val:
raise ValueError(f"{name} {angle}° must be between {min_val}° and {max_val}°")
def equation_of_time(self, day_of_year: Union[int, np.ndarray]) -> Union[float, np.ndarray]:
"""
Calculate the Equation of Time (EoT) in minutes.
Reference: Duffie & Beckman (4th Ed.), Eq 1.5.3a.
Args:
day_of_year: Day of the year (1-365 or 1-366).
Returns:
Equation of Time in minutes.
"""
if isinstance(day_of_year, np.ndarray):
if np.any(day_of_year < 1) or np.any(day_of_year > 366):
raise ValueError("Day of year must be between 1 and 366")
elif not 1 <= day_of_year <= 366:
raise ValueError("Day of year must be between 1 and 366")
B = (day_of_year - 1) * 360 / 365 # degrees (approximate)
B_rad = np.radians(B)
eot = 229.18 * (0.000075 + 0.001868 * np.cos(B_rad) - 0.032077 * np.sin(B_rad) \
- 0.014615 * np.cos(2 * B_rad) - 0.04089 * np.sin(2 * B_rad))
return eot
def solar_declination(self, day_of_year: Union[int, np.ndarray]) -> Union[float, np.ndarray]:
"""
Calculate solar declination angle.
Reference: Duffie & Beckman (4th Ed.), Eq 1.6.1a (more accurate than ASHRAE approx).
Args:
day_of_year: Day of the year (1-365 or 1-366).
Returns:
Declination angle in degrees.
"""
if isinstance(day_of_year, np.ndarray):
if np.any(day_of_year < 1) or np.any(day_of_year > 366):
raise ValueError("Day of year must be between 1 and 366")
elif not 1 <= day_of_year <= 366:
raise ValueError("Day of year must be between 1 and 366")
# Using Spencer's formula (1971) as cited in Duffie & Beckman
gamma_rad = (2 * np.pi / 365) * (day_of_year - 1)
declination_rad = (0.006918 - 0.399912 * np.cos(gamma_rad) + 0.070257 * np.sin(gamma_rad)
- 0.006758 * np.cos(2 * gamma_rad) + 0.000907 * np.sin(2 * gamma_rad)
- 0.002697 * np.cos(3 * gamma_rad) + 0.00148 * np.sin(3 * gamma_rad))
declination = np.degrees(declination_rad)
# self.validate_angle(declination, "Declination angle", -23.45, 23.45)
return declination
def solar_time(self, local_standard_time_hour: Union[float, np.ndarray], eot_minutes: Union[float, np.ndarray],
longitude_deg: float, standard_meridian_deg: float) -> Union[float, np.ndarray]:
"""
Calculate solar time (Local Apparent Time, LAT).
Reference: Duffie & Beckman (4th Ed.), Eq 1.5.2.
Args:
local_standard_time_hour: Local standard time (clock time) in hours (0-24).
eot_minutes: Equation of Time in minutes.
longitude_deg: Local longitude in degrees (East positive, West negative).
standard_meridian_deg: Standard meridian for the local time zone in degrees.
Returns:
Solar time in hours (0-24).
"""
# Time correction for longitude difference from standard meridian
longitude_correction_minutes = 4 * (standard_meridian_deg - longitude_deg)
solar_time_hour = local_standard_time_hour + (eot_minutes + longitude_correction_minutes) / 60.0
return solar_time_hour
def solar_hour_angle(self, solar_time_hour: Union[float, np.ndarray]) -> Union[float, np.ndarray]:
"""
Calculate solar hour angle from solar time.
Reference: Duffie & Beckman (4th Ed.), Section 1.6.
Args:
solar_time_hour: Solar time in hours (0-24).
Returns:
Hour angle in degrees (-180 to 180, zero at solar noon).
"""
# Hour angle is 15 degrees per hour from solar noon (12)
hour_angle = (solar_time_hour - 12) * 15
# self.validate_angle(hour_angle, "Hour angle", -180, 180)
return hour_angle
def solar_zenith_altitude(self, latitude_deg: float, declination_deg: Union[float, np.ndarray],
hour_angle_deg: Union[float, np.ndarray]) -> Tuple[Union[float, np.ndarray], Union[float, np.ndarray]]:
"""
Calculate solar zenith and altitude angles.
Reference: Duffie & Beckman (4th Ed.), Eq 1.6.5.
Args:
latitude_deg: Latitude in degrees.
declination_deg: Declination angle in degrees.
hour_angle_deg: Hour angle in degrees.
Returns:
Tuple: (zenith angle in degrees [0-180], altitude angle in degrees [-90 to 90]).
Altitude is 90 - zenith.
"""
self.validate_angle(latitude_deg, "Latitude", -90, 90)
# self.validate_angle(declination_deg, "Declination", -23.45, 23.45)
# self.validate_angle(hour_angle_deg, "Hour angle", -180, 180)
lat_rad = np.radians(latitude_deg)
dec_rad = np.radians(declination_deg)
ha_rad = np.radians(hour_angle_deg)
cos_zenith = (np.sin(lat_rad) * np.sin(dec_rad) +
np.cos(lat_rad) * np.cos(dec_rad) * np.cos(ha_rad))
# Clamp cos_zenith to [-1, 1] due to potential floating point inaccuracies
cos_zenith = np.clip(cos_zenith, -1.0, 1.0)
zenith_rad = np.arccos(cos_zenith)
zenith_deg = np.degrees(zenith_rad)
altitude_deg = 90.0 - zenith_deg
# self.validate_angle(zenith_deg, "Zenith angle", 0, 180)
# self.validate_angle(altitude_deg, "Altitude angle", -90, 90)
return zenith_deg, altitude_deg
def solar_azimuth(self, latitude_deg: float, declination_deg: Union[float, np.ndarray],
hour_angle_deg: Union[float, np.ndarray], zenith_deg: Union[float, np.ndarray]) -> Union[float, np.ndarray]:
"""
Calculate solar azimuth angle (measured clockwise from North = 0°).
Reference: Duffie & Beckman (4th Ed.), Eq 1.6.6 (modified for N=0, E=90, S=180, W=270).
Args:
latitude_deg: Latitude in degrees.
declination_deg: Declination angle in degrees.
hour_angle_deg: Hour angle in degrees.
zenith_deg: Zenith angle in degrees.
Returns:
Azimuth angle in degrees (0-360, clockwise from North).
"""
lat_rad = np.radians(latitude_deg)
dec_rad = np.radians(declination_deg)
ha_rad = np.radians(hour_angle_deg)
zenith_rad = np.radians(zenith_deg)
# Avoid division by zero if zenith is 0 (sun directly overhead)
sin_zenith = np.sin(zenith_rad)
azimuth_deg = np.zeros_like(zenith_deg) # Initialize with zeros
# Calculate only where sin_zenith is significantly greater than zero
valid_mask = sin_zenith > 1e-6
if isinstance(valid_mask, bool): # Handle scalar case
if valid_mask:
cos_azimuth_term = (np.sin(dec_rad) * np.cos(lat_rad) - np.cos(dec_rad) * np.sin(lat_rad) * np.cos(ha_rad)) / sin_zenith
cos_azimuth_term = np.clip(cos_azimuth_term, -1.0, 1.0)
azimuth_rad_provisional = np.arccos(cos_azimuth_term)
azimuth_deg_provisional = np.degrees(azimuth_rad_provisional)
# Adjust based on hour angle
if isinstance(hour_angle_deg, np.ndarray):
azimuth_deg = np.where(hour_angle_deg > 0, 360.0 - azimuth_deg_provisional, azimuth_deg_provisional)
else:
azimuth_deg = 360.0 - azimuth_deg_provisional if hour_angle_deg > 0 else azimuth_deg_provisional
else:
azimuth_deg = 0.0 # Undefined when sun is at zenith, assign 0
else: # Handle array case
cos_azimuth_term = np.full_like(zenith_deg, 0.0)
# Calculate term only for valid entries
cos_azimuth_term[valid_mask] = (np.sin(dec_rad[valid_mask]) * np.cos(lat_rad) - np.cos(dec_rad[valid_mask]) * np.sin(lat_rad) * np.cos(ha_rad[valid_mask])) / sin_zenith[valid_mask]
cos_azimuth_term = np.clip(cos_azimuth_term, -1.0, 1.0)
azimuth_rad_provisional = np.arccos(cos_azimuth_term)
azimuth_deg_provisional = np.degrees(azimuth_rad_provisional)
# Adjust based on hour angle (vectorized)
azimuth_deg = np.where(hour_angle_deg > 0, 360.0 - azimuth_deg_provisional, azimuth_deg_provisional)
# Ensure invalid entries remain 0
azimuth_deg[~valid_mask] = 0.0
# self.validate_angle(azimuth_deg, "Azimuth angle", 0, 360)
return azimuth_deg
def extraterrestrial_radiation_normal(self, day_of_year: Union[int, np.ndarray]) -> Union[float, np.ndarray]:
"""
Calculate extraterrestrial solar radiation normal to the sun's rays.
Reference: Duffie & Beckman (4th Ed.), Eq 1.4.1b.
Args:
day_of_year: Day of the year (1-365 or 1-366).
Returns:
Extraterrestrial normal irradiance (G_on) in W/m².
"""
B = (day_of_year - 1) * 360 / 365 # degrees
B_rad = np.radians(B)
G_on = SOLAR_CONSTANT * (1.000110 + 0.034221 * np.cos(B_rad) + 0.001280 * np.sin(B_rad)
+ 0.000719 * np.cos(2 * B_rad) + 0.000077 * np.sin(2 * B_rad))
return G_on
def angle_of_incidence(self, latitude_deg: float, declination_deg: float, hour_angle_deg: float,
surface_tilt_deg: float, surface_azimuth_deg: float) -> float:
"""
Calculate the angle of incidence of beam radiation on a tilted surface.
Reference: Duffie & Beckman (4th Ed.), Eq 1.6.2.
Args:
latitude_deg: Latitude.
declination_deg: Solar declination.
hour_angle_deg: Solar hour angle.
surface_tilt_deg: Surface tilt angle from horizontal (0=horizontal, 90=vertical).
surface_azimuth_deg: Surface azimuth angle (0=N, 90=E, 180=S, 270=W).
Returns:
Angle of incidence in degrees (0-90). Returns > 90 if sun is behind surface.
"""
lat_rad = np.radians(latitude_deg)
dec_rad = np.radians(declination_deg)
ha_rad = np.radians(hour_angle_deg)
tilt_rad = np.radians(surface_tilt_deg)
surf_azim_rad = np.radians(surface_azimuth_deg)
# Convert surface azimuth from N=0 to S=0 convention used in formula
gamma_rad = surf_azim_rad - np.pi # S=0, E=pi/2, W=-pi/2
cos_theta = (np.sin(lat_rad) * np.sin(dec_rad) * np.cos(tilt_rad)
- np.cos(lat_rad) * np.sin(dec_rad) * np.sin(tilt_rad) * np.cos(gamma_rad)
+ np.cos(lat_rad) * np.cos(dec_rad) * np.cos(ha_rad) * np.cos(tilt_rad)
+ np.sin(lat_rad) * np.cos(dec_rad) * np.cos(ha_rad) * np.sin(tilt_rad) * np.cos(gamma_rad)
+ np.cos(dec_rad) * np.sin(ha_rad) * np.sin(tilt_rad) * np.sin(gamma_rad))
# Clamp cos_theta to [-1, 1]
cos_theta = np.clip(cos_theta, -1.0, 1.0)
theta_rad = np.arccos(cos_theta)
theta_deg = np.degrees(theta_rad)
return theta_deg
def ashrae_clear_sky_radiation(self, day_of_year: int, hour: float, latitude_deg: float,
longitude_deg: float, standard_meridian_deg: float,
altitude_m: float = 0) -> Tuple[float, float, float]:
"""
Estimate DNI and DHI using ASHRAE Clear Sky model.
Reference: ASHRAE HOF 2017, Ch. 14, Eq. 14.18-14.21 (Simplified version)
Args:
day_of_year, hour, latitude_deg, longitude_deg, standard_meridian_deg: Location/time info.
altitude_m: Site altitude in meters.
Returns:
Tuple: (DNI in W/m², DHI in W/m², GHI in W/m²)
"""
# 1. Calculate Solar Angles
eot = self.equation_of_time(day_of_year)
solar_time = self.solar_time(hour, eot, longitude_deg, standard_meridian_deg)
ha = self.solar_hour_angle(solar_time)
dec = self.solar_declination(day_of_year)
zenith, alt = self.solar_zenith_altitude(latitude_deg, dec, ha)
if alt <= 0: # Sun below horizon
return 0.0, 0.0, 0.0
# 2. Extraterrestrial Radiation
G_on = self.extraterrestrial_radiation_normal(day_of_year)
G_oh = G_on * np.cos(np.radians(zenith)) # On horizontal surface
# 3. ASHRAE Clear Sky Model Parameters (simplified)
# These depend on atmospheric conditions (clearness, water vapor, etc.)
# Using typical clear day values for illustration
A = 1160 + 75 * np.sin(np.radians(360 * (day_of_year - 275) / 365)) # Apparent extraterrestrial irradiance
k = 0.174 + 0.035 * np.sin(np.radians(360 * (day_of_year - 100) / 365)) # Optical depth
C = 0.095 + 0.04 * np.sin(np.radians(360 * (day_of_year - 100) / 365)) # Sky diffuse factor
# Air mass (simplified Kasten and Young, 1989)
m = 1 / (np.cos(np.radians(zenith)) + 0.50572 * (96.07995 - zenith)**(-1.6364))
# Altitude correction for air mass (approximate)
pressure_ratio = (Psychrometrics().pressure_at_altitude(altitude_m) / ATMOSPHERIC_PRESSURE)
m *= pressure_ratio
# 4. Calculate DNI and DHI
dni = A * np.exp(-k * m)
dhi = C * dni
ghi = dni * np.cos(np.radians(zenith)) + dhi
# Ensure non-negative
dni = max(0.0, dni)
dhi = max(0.0, dhi)
ghi = max(0.0, ghi)
return dni, dhi, ghi
def total_radiation_on_surface(self, dni: float, dhi: float, ghi: float,
zenith_deg: float, solar_azimuth_deg: float,
surface_tilt_deg: float, surface_azimuth_deg: float,
ground_reflectance: float = 0.2) -> Tuple[float, float, float, float]:
"""
Calculate total solar radiation incident on a tilted surface.
Uses isotropic sky model for diffuse radiation.
Reference: Duffie & Beckman (4th Ed.), Section 2.15, 2.16.
Args:
dni, dhi, ghi: Direct Normal, Diffuse Horizontal, Global Horizontal Irradiance (W/m²).
zenith_deg, solar_azimuth_deg: Solar position angles.
surface_tilt_deg, surface_azimuth_deg: Surface orientation angles.
ground_reflectance: Albedo of the ground (0-1).
Returns:
Tuple: (Total G_t, Direct G_b,t, Diffuse G_d,t, Reflected G_r,t) on surface (W/m²).
"""
if zenith_deg >= 90: # Sun below horizon
return 0.0, 0.0, 0.0, 0.0
# 1. Angle of Incidence (theta)
# Need latitude, declination, hour angle for precise calculation, OR use zenith/azimuth
# Using zenith/azimuth method (Duffie & Beckman Eq 1.6.3)
cos_theta = (np.cos(np.radians(zenith_deg)) * np.cos(np.radians(surface_tilt_deg)) +
np.sin(np.radians(zenith_deg)) * np.sin(np.radians(surface_tilt_deg)) *
np.cos(np.radians(solar_azimuth_deg - surface_azimuth_deg)))
cos_theta = np.clip(cos_theta, -1.0, 1.0)
theta_deg = np.degrees(np.arccos(cos_theta))
# 2. Direct Beam component on tilted surface (G_b,t)
# Only if sun is in front of the surface (theta <= 90)
G_b_t = dni * cos_theta if theta_deg <= 90.0 else 0.0
G_b_t = max(0.0, G_b_t)
# 3. Diffuse component on tilted surface (G_d,t) - Isotropic Sky Model
# View factor from surface to sky
F_sky = (1 + np.cos(np.radians(surface_tilt_deg))) / 2
G_d_t = dhi * F_sky
G_d_t = max(0.0, G_d_t)
# 4. Ground Reflected component on tilted surface (G_r,t)
# View factor from surface to ground
F_ground = (1 - np.cos(np.radians(surface_tilt_deg))) / 2
G_r_t = ghi * ground_reflectance * F_ground
G_r_t = max(0.0, G_r_t)
# 5. Total radiation on tilted surface
G_t = G_b_t + G_d_t + G_r_t
return G_t, G_b_t, G_d_t, G_r_t
class HeatTransferCalculations:
"""Class for heat transfer calculations."""
def __init__(self, debug_mode: bool = False):
"""
Initialize heat transfer calculations with psychrometrics and solar calculations.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 16.
Args:
debug_mode: Enable debug logging if True.
"""
self.psychrometrics = Psychrometrics()
self.solar = SolarCalculations()
self.debug_mode = debug_mode
if debug_mode:
logger.setLevel(logging.DEBUG)
def conduction_heat_transfer(self, u_value: Union[float, np.ndarray], area: Union[float, np.ndarray],
delta_t: Union[float, np.ndarray]) -> Union[float, np.ndarray]:
"""
Calculate heat transfer via conduction.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
u_value: U-value(s) of the component(s) in W/(m²·K)
area: Area(s) of the component(s) in m²
delta_t: Temperature difference(s) in °C or K
Returns:
Heat transfer rate(s) in W
"""
if isinstance(u_value, np.ndarray) or isinstance(area, np.ndarray) or isinstance(delta_t, np.ndarray):
u_value = np.asarray(u_value)
area = np.asarray(area)
delta_t = np.asarray(delta_t)
if np.any(u_value < 0) or np.any(area < 0):
raise ValueError("U-value and area must be non-negative")
elif u_value < 0 or area < 0:
raise ValueError("U-value and area must be non-negative")
q = u_value * area * delta_t
return q
def infiltration_heat_transfer(self, flow_rate: Union[float, np.ndarray], delta_t: Union[float, np.ndarray],
t_db: Union[float, np.ndarray], rh: Union[float, np.ndarray],
p_atm: Union[float, np.ndarray] = ATMOSPHERIC_PRESSURE) -> Union[float, np.ndarray]:
"""
Calculate sensible heat transfer due to infiltration or ventilation.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.5.
Args:
flow_rate: Air flow rate(s) in m³/s
delta_t: Temperature difference(s) in °C or K
t_db: Dry-bulb temperature(s) for air properties in °C
rh: Relative humidity(ies) in % (0-100)
p_atm: Atmospheric pressure(s) in Pa
Returns:
Sensible heat transfer rate(s) in W
"""
# Convert inputs to numpy arrays if any input is an array
is_array = any(isinstance(arg, np.ndarray) for arg in [flow_rate, delta_t, t_db, rh, p_atm])
if is_array:
flow_rate = np.asarray(flow_rate)
delta_t = np.asarray(delta_t)
t_db = np.asarray(t_db)
rh = np.asarray(rh)
p_atm = np.asarray(p_atm)
if np.any(flow_rate < 0):
raise ValueError("Flow rate cannot be negative")
elif flow_rate < 0:
raise ValueError("Flow rate cannot be negative")
# Calculate air density and specific heat using psychrometrics (vectorized if needed)
w = self.psychrometrics.humidity_ratio(t_db, rh, p_atm)
rho = self.psychrometrics.density(t_db, w, p_atm)
c_p = 1006 + 1860 * w # Specific heat of moist air in J/(kg·K)
q = flow_rate * rho * c_p * delta_t
return q
def infiltration_latent_heat_transfer(self, flow_rate: Union[float, np.ndarray], delta_w: Union[float, np.ndarray],
t_db: Union[float, np.ndarray], rh: Union[float, np.ndarray] = 40.0,
p_atm: Union[float, np.ndarray] = ATMOSPHERIC_PRESSURE) -> Union[float, np.ndarray]:
"""
Calculate latent heat transfer due to infiltration or ventilation.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.6.
Args:
flow_rate: Air flow rate(s) in m³/s
delta_w: Humidity ratio difference(s) in kg/kg
t_db: Dry-bulb temperature(s) for air properties in °C
rh: Relative humidity(ies) in % (0-100), default 40%
p_atm: Atmospheric pressure(s) in Pa, default 101325 Pa
Returns:
Latent heat transfer rate(s) in W
"""
is_array = any(isinstance(arg, np.ndarray) for arg in [flow_rate, delta_w, t_db, rh, p_atm])
if is_array:
flow_rate = np.asarray(flow_rate)
delta_w = np.asarray(delta_w)
t_db = np.asarray(t_db)
rh = np.asarray(rh)
p_atm = np.asarray(p_atm)
if np.any(flow_rate < 0):
raise ValueError("Flow rate cannot be negative")
if np.any(rh < 0) or np.any(rh > 100):
raise ValueError("Relative humidity must be between 0 and 100%")
# Delta_w can be negative (humidification)
else:
if flow_rate < 0:
raise ValueError("Flow rate cannot be negative")
if not 0 <= rh <= 100:
raise ValueError("Relative humidity must be between 0 and 100%")
# Calculate air density and latent heat
w = self.psychrometrics.humidity_ratio(t_db, rh, p_atm) # Calculate humidity ratio from rh
rho = self.psychrometrics.density(t_db, w, p_atm) # Use actual humidity ratio for density
h_fg = self.psychrometrics.latent_heat_of_vaporization(t_db) # J/kg
q = flow_rate * rho * h_fg * delta_w
return q
def wind_pressure_difference(self, wind_speed: float, wind_pressure_coeff: float = 0.6,
air_density: float = 1.2) -> float:
"""
Calculate pressure difference due to wind.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 16, Equation 16.3.
Args:
wind_speed: Wind speed in m/s.
wind_pressure_coeff: Wind pressure coefficient (depends on building shape, location).
air_density: Air density in kg/m³.
Returns:
Pressure difference in Pa.
"""
if wind_speed < 0:
raise ValueError("Wind speed cannot be negative")
delta_p = 0.5 * wind_pressure_coeff * air_density * wind_speed**2
return delta_p
def stack_pressure_difference(self, height: float, t_inside_k: float, t_outside_k: float,
p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
"""
Calculate pressure difference due to stack effect.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 16, Equation 16.4.
Args:
height: Height difference in m (e.g., NPL to opening).
t_inside_k: Inside absolute temperature in K.
t_outside_k: Outside absolute temperature in K.
p_atm: Atmospheric pressure in Pa.
Returns:
Pressure difference in Pa.
"""
if height < 0 or t_inside_k <= 0 or t_outside_k <= 0:
raise ValueError("Height and absolute temperatures must be positive")
g = 9.80665 # Gravitational acceleration in m/s²
r_da = GAS_CONSTANT_DRY_AIR
# Calculate Density inside and outside (approximating as dry air for simplicity)
rho_inside = p_atm / (r_da * t_inside_k)
rho_outside = p_atm / (r_da * t_outside_k)
# Pressure difference = g * height * (rho_outside - rho_inside)
delta_p = g * height * (rho_outside - rho_inside)
return delta_p
def combined_pressure_difference(self, wind_pd: float, stack_pd: float) -> float:
""" Calculate combined pressure difference from wind and stack effects (simple superposition). """
delta_p = math.sqrt(wind_pd**2 + stack_pd**2)
return delta_p
def crack_method_infiltration(self, crack_length: float, crack_width: float, delta_p: float,
flow_exponent: float = 0.65) -> float:
"""
Calculate infiltration flow rate using the power law (crack) method.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 16, Equation 16.5.
Formula: Q = flow_coeff * area * (delta_p / 0.001)^n
Args:
crack_length: Length of cracks in m.
crack_width: Width of cracks in m.
delta_p: Pressure difference across cracks in Pa.
flow_exponent: Flow exponent (n), typically 0.5 to 1.0 (default 0.65).
Returns:
Infiltration flow rate (Q) in m³/s.
"""
if crack_length < 0 or crack_width < 0 or delta_p < 0:
raise ValueError("Crack length, crack width, and pressure difference must be non-negative")
if not 0.5 <= flow_exponent <= 1.0:
logger.warning(f"Flow exponent {flow_exponent} is outside the typical range [0.5, 1.0]")
flow_coeff = 0.65 # ASHRAE default flow coefficient
area = crack_length * crack_width
q = flow_coeff * area * ((delta_p / 0.001) ** flow_exponent)
return q
# Example usage
if __name__ == "__main__":
heat_transfer = HeatTransferCalculations(debug_mode=True)
# Example conduction calculation
u_value = 0.5
area = 20.0
delta_t = 10.0
q_conduction = heat_transfer.conduction_heat_transfer(u_value, area, delta_t)
logger.info(f"Conduction heat transfer: {q_conduction:.2f} W")
# Example infiltration calculation (Sensible)
flow_rate = 0.05
delta_t_inf = 10.0
t_db_inf = 25.0
rh_inf = 50.0
q_inf_sens = heat_transfer.infiltration_heat_transfer(flow_rate, delta_t_inf, t_db_inf, rh_inf)
logger.info(f"Infiltration sensible heat transfer: {q_inf_sens:.2f} W")
# Example infiltration calculation (Latent)
delta_w_inf = 0.002 # kg/kg
q_inf_lat = heat_transfer.infiltration_latent_heat_transfer(flow_rate, delta_w_inf, t_db_inf, rh_inf)
logger.info(f"Infiltration latent heat transfer: {q_inf_lat:.2f} W")
# Example Solar Calculation
logger.info("--- Solar Calculation Example ---")
latitude = 34.0 # Los Angeles
longitude = -118.0
std_meridian = -120.0 # PST
day_of_year = 80 # Around March 21
hour = 13.5 # Local standard time
altitude_m = 100
# Get clear sky radiation
dni, dhi, ghi = heat_transfer.solar.ashrae_clear_sky_radiation(
day_of_year, hour, latitude, longitude, std_meridian, altitude_m
)
logger.info(f"Clear Sky Radiation (W/m²): DNI={dni:.1f}, DHI={dhi:.1f}, GHI={ghi:.1f}")
# Calculate radiation on a south-facing vertical wall
eot = heat_transfer.solar.equation_of_time(day_of_year)
solar_time = heat_transfer.solar.solar_time(hour, eot, longitude, std_meridian)
ha = heat_transfer.solar.solar_hour_angle(solar_time)
dec = heat_transfer.solar.solar_declination(day_of_year)
zenith, alt = heat_transfer.solar.solar_zenith_altitude(latitude, dec, ha)
sol_azimuth = heat_transfer.solar.solar_azimuth(latitude, dec, ha, zenith)
surface_tilt = 90.0
surface_azimuth = 180.0 # South facing
ground_reflectance = 0.2
if alt > 0:
G_t, G_b_t, G_d_t, G_r_t = heat_transfer.solar.total_radiation_on_surface(
dni, dhi, ghi, zenith, sol_azimuth, surface_tilt, surface_azimuth, ground_reflectance
)
logger.info(f"Radiation on South Vertical Wall (W/m²): Total={G_t:.1f}, Beam={G_b_t:.1f}, Diffuse={G_d_t:.1f}, Reflected={G_r_t:.1f}")
theta = heat_transfer.solar.angle_of_incidence(latitude, dec, ha, surface_tilt, surface_azimuth)
logger.info(f"Incidence Angle: {theta:.1f} degrees")
else:
logger.info("Sun is below horizon.")
# Vectorized example (e.g., hourly conduction)
logger.info("--- Vectorized Conduction Example ---")
hours_array = np.arange(24)
delta_t_hourly = 10 * np.sin(np.pi * (hours_array - 8) / 12) + 5 # Example hourly delta T
delta_t_hourly[delta_t_hourly < 0] = 0 # Only positive delta T
q_conduction_hourly = heat_transfer.conduction_heat_transfer(u_value, area, delta_t_hourly)
logger.info(f"Peak Hourly Conduction: {np.max(q_conduction_hourly):.2f} W")