Upload 2 files
Browse files- app.py +265 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from tensorflow import keras
|
| 3 |
+
import os
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from NNVisualiser import NNVisualiser
|
| 7 |
+
import glob
|
| 8 |
+
import inspect
|
| 9 |
+
from tensorflow.keras.models import save_model
|
| 10 |
+
import tempfile
|
| 11 |
+
import re
|
| 12 |
+
import zipfile
|
| 13 |
+
import io
|
| 14 |
+
|
| 15 |
+
# Function to create a ZIP file of all PNG files
|
| 16 |
+
def create_zip_of_png_files():
|
| 17 |
+
# Get current working directory
|
| 18 |
+
cwd = os.getcwd()
|
| 19 |
+
png_files = [f for f in os.listdir(cwd) if f.endswith('.png')]
|
| 20 |
+
|
| 21 |
+
# Create a BytesIO object to hold the ZIP file in memory
|
| 22 |
+
zip_buffer = io.BytesIO()
|
| 23 |
+
|
| 24 |
+
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
|
| 25 |
+
for png_file in png_files:
|
| 26 |
+
zip_file.write(os.path.join(cwd, png_file), arcname=png_file)
|
| 27 |
+
|
| 28 |
+
zip_buffer.seek(0) # Seek to the beginning of the BytesIO buffer
|
| 29 |
+
return zip_buffer
|
| 30 |
+
|
| 31 |
+
def generate_title_from_method_name(method_name):
|
| 32 |
+
# Remove the "plot" prefix if it exists
|
| 33 |
+
if method_name.startswith("plot"):
|
| 34 |
+
method_name = method_name[4:] # Remove the first 4 characters ("plot")
|
| 35 |
+
|
| 36 |
+
# Split the string at camel case boundaries
|
| 37 |
+
words = re.findall(r'[A-Z][a-z]*', method_name)
|
| 38 |
+
|
| 39 |
+
# Join the words with spaces and format the final string
|
| 40 |
+
title = "Plotting " + " ".join(words[:]) + " Plot "
|
| 41 |
+
|
| 42 |
+
return title
|
| 43 |
+
|
| 44 |
+
def downloadKerasModel():
|
| 45 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".keras") as tmp_file:
|
| 46 |
+
save_model(model, tmp_file.name)
|
| 47 |
+
tmp_file.seek(0)
|
| 48 |
+
model_data = tmp_file.read()
|
| 49 |
+
return model_data
|
| 50 |
+
|
| 51 |
+
# Function to build folder hierarchy up to the 6th level (excluding files and hidden folders)
|
| 52 |
+
@st.cache_data
|
| 53 |
+
def generate_folder_hierarchy(root_folder, max_depth=6):
|
| 54 |
+
folder_dict = {}
|
| 55 |
+
|
| 56 |
+
# Traverse through the directory tree
|
| 57 |
+
for dirpath, dirnames, filenames in os.walk(root_folder):
|
| 58 |
+
# Get the relative path from the root folder
|
| 59 |
+
rel_path = os.path.relpath(dirpath, root_folder)
|
| 60 |
+
depth = rel_path.count(os.sep) + 1 # Calculate the depth level
|
| 61 |
+
|
| 62 |
+
# Only include directories up to the max_depth (7th level)
|
| 63 |
+
if depth > max_depth:
|
| 64 |
+
continue
|
| 65 |
+
|
| 66 |
+
# Filter out directories that start with a dot (e.g., .git)
|
| 67 |
+
dirnames[:] = [d for d in dirnames if not d.startswith('.') and d != '1']
|
| 68 |
+
|
| 69 |
+
sub_dict = folder_dict
|
| 70 |
+
# Split the relative path into parts to create a nested structure
|
| 71 |
+
for part in rel_path.split(os.sep):
|
| 72 |
+
if part == '.' or part.startswith('.'):
|
| 73 |
+
continue
|
| 74 |
+
if part not in sub_dict:
|
| 75 |
+
sub_dict[part] = {}
|
| 76 |
+
sub_dict = sub_dict[part]
|
| 77 |
+
|
| 78 |
+
return folder_dict
|
| 79 |
+
|
| 80 |
+
@st.cache_data
|
| 81 |
+
def getPlotMethods():
|
| 82 |
+
return [name for name, func in inspect.getmembers(NNVisualiser, inspect.isfunction) if name.startswith('plot')]
|
| 83 |
+
|
| 84 |
+
# Example usage
|
| 85 |
+
root_folder = os.getcwd(); # Replace with your folder path
|
| 86 |
+
folder_hierarchy = generate_folder_hierarchy(root_folder)
|
| 87 |
+
|
| 88 |
+
# Streamlit app
|
| 89 |
+
st.title("Repository : Simple ANN Models with UAT Architecture")
|
| 90 |
+
st.write(f"A Collection of ANN Models with a 1-xReLU-1 Architecture for Basic 1D Functions on Bounded Intervals")
|
| 91 |
+
#Commented
|
| 92 |
+
|
| 93 |
+
# col1, col2, col3 = st.columns([4, 3, 3])
|
| 94 |
+
|
| 95 |
+
# with col1:
|
| 96 |
+
# # Level 1: Initialisation dropdown
|
| 97 |
+
# initialisation = st.selectbox("Select Initialisation", list(folder_hierarchy.keys()))
|
| 98 |
+
|
| 99 |
+
# with col2:
|
| 100 |
+
# # Level 2: Sample size dropdown, based on selected initialisation
|
| 101 |
+
# sampleSize = st.selectbox("Select Sample Size", list(folder_hierarchy[initialisation].keys()))
|
| 102 |
+
|
| 103 |
+
# with col3:
|
| 104 |
+
# # Level 3: Batch size dropdown, based on selected sample size
|
| 105 |
+
# batchSize = st.selectbox("Select Batch Size", list(folder_hierarchy[initialisation][sampleSize].keys()))
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# col4, col5, col6 = st.columns([3, 4, 3])
|
| 109 |
+
|
| 110 |
+
# with col4:
|
| 111 |
+
# # Level 4: Epochs count dropdown, based on selected batch size
|
| 112 |
+
# epochs = st.selectbox("Select Epochs Count", list(folder_hierarchy[initialisation][sampleSize][batchSize].keys()))
|
| 113 |
+
|
| 114 |
+
# with col5:
|
| 115 |
+
# # Level 5: Functions list dropdown, based on selected epochs count
|
| 116 |
+
# functions = st.selectbox("Select Neurons Count", list(folder_hierarchy[initialisation][sampleSize][batchSize][epochs].keys()))
|
| 117 |
+
|
| 118 |
+
# with col6:
|
| 119 |
+
# # Level 6: Neurons count dropdown, based on selected function
|
| 120 |
+
# neurons = st.selectbox("Select Neurons Count", list(folder_hierarchy[initialisation][sampleSize][batchSize][epochs][functions].keys()))
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
initialisation = st.sidebar.selectbox("Select Initialisation", list(folder_hierarchy.keys()))
|
| 124 |
+
sampleSize = st.sidebar.selectbox("Select Sample Size", list(folder_hierarchy[initialisation].keys()))
|
| 125 |
+
batchSize = st.sidebar.selectbox("Select Batch Size", list(folder_hierarchy[initialisation][sampleSize].keys()))
|
| 126 |
+
epochs = st.sidebar.selectbox("Select Epochs Count", list(folder_hierarchy[initialisation][sampleSize][batchSize].keys()))
|
| 127 |
+
functions = st.sidebar.selectbox("Select Neurons Count", list(folder_hierarchy[initialisation][sampleSize][batchSize][epochs].keys()))
|
| 128 |
+
neurons = st.sidebar.selectbox("Select Neurons Count", list(folder_hierarchy[initialisation][sampleSize][batchSize][epochs][functions].keys()))
|
| 129 |
+
|
| 130 |
+
# Display the selected values
|
| 131 |
+
st.write(f"You selected: {initialisation} : {sampleSize} : {batchSize} : {epochs} : {functions} : {neurons}")
|
| 132 |
+
|
| 133 |
+
modelPath = os.path.join(os.getcwd(), initialisation, sampleSize, batchSize, epochs, functions, neurons);
|
| 134 |
+
model = keras.models.load_model(modelPath);
|
| 135 |
+
|
| 136 |
+
visualiser = NNVisualiser(model);
|
| 137 |
+
visualiser.setSavePlots(True);
|
| 138 |
+
|
| 139 |
+
# Function to get layer and neuron information
|
| 140 |
+
def get_layer_info(model):
|
| 141 |
+
layer_info = []
|
| 142 |
+
for layer in model.layers:
|
| 143 |
+
layer_info.append({
|
| 144 |
+
'index': len(layer_info),
|
| 145 |
+
'type': layer.__class__.__name__,
|
| 146 |
+
'units': getattr(layer, 'units', None), # Number of neurons
|
| 147 |
+
})
|
| 148 |
+
return layer_info
|
| 149 |
+
|
| 150 |
+
layer_info = get_layer_info(model)
|
| 151 |
+
|
| 152 |
+
# Extract layer indices and neuron counts
|
| 153 |
+
layer_indices = [layer['index'] for layer in layer_info]
|
| 154 |
+
neuron_counts = [layer['units'] for layer in layer_info]
|
| 155 |
+
|
| 156 |
+
# Dropdown for selecting layer index
|
| 157 |
+
#selected_layer_index = st.sidebar.selectbox("Select Layer Index", layer_indices)
|
| 158 |
+
|
| 159 |
+
# Find the number of neurons for the selected layer
|
| 160 |
+
#selected_layer_units = neuron_counts[selected_layer_index]
|
| 161 |
+
|
| 162 |
+
# Dropdown for selecting neuron index in the selected layer
|
| 163 |
+
#neuron_indices = list(range(selected_layer_units))
|
| 164 |
+
#selected_neuron_index = st.sidebar.selectbox("Select Neuron Index", neuron_indices)
|
| 165 |
+
|
| 166 |
+
# Dropdown for selecting plots from NNVisualiser
|
| 167 |
+
plotMethods = getPlotMethods()
|
| 168 |
+
selectedPlotMethod = st.sidebar.selectbox("Select Plot", plotMethods)
|
| 169 |
+
|
| 170 |
+
#Removing earlier plots
|
| 171 |
+
image_files = glob.glob("*.png")
|
| 172 |
+
for file in image_files:
|
| 173 |
+
try:
|
| 174 |
+
os.remove(file)
|
| 175 |
+
except Exception as e:
|
| 176 |
+
st.write("Error in removing previous plots")
|
| 177 |
+
|
| 178 |
+
st.session_state.title_text = generate_title_from_method_name(selectedPlotMethod)
|
| 179 |
+
st.title(st.session_state.title_text)
|
| 180 |
+
|
| 181 |
+
# Call your package's plot method (which directly plots without returning a figure)
|
| 182 |
+
visualiser.setSavePlots(True);
|
| 183 |
+
method = getattr(visualiser, selectedPlotMethod, None)
|
| 184 |
+
|
| 185 |
+
if method is not None:
|
| 186 |
+
if 'Neuron' in selectedPlotMethod:
|
| 187 |
+
selected_layer_index = st.sidebar.selectbox("Select Layer Index", layer_indices)
|
| 188 |
+
# Find the number of neurons for the selected layer
|
| 189 |
+
selected_layer_units = neuron_counts[selected_layer_index]
|
| 190 |
+
# Dropdown for selecting neuron index in the selected layer
|
| 191 |
+
neuron_indices = list(range(selected_layer_units))
|
| 192 |
+
selected_neuron_index = st.sidebar.selectbox("Select Neuron Index", neuron_indices)
|
| 193 |
+
params = (selected_layer_index, selected_neuron_index)
|
| 194 |
+
method(*params)
|
| 195 |
+
elif 'Layer' in selectedPlotMethod:
|
| 196 |
+
selected_layer_index = st.sidebar.selectbox("Select Layer Index", layer_indices)
|
| 197 |
+
params = (selected_layer_index,)
|
| 198 |
+
method(*params)
|
| 199 |
+
else:
|
| 200 |
+
method()
|
| 201 |
+
|
| 202 |
+
st.session_state.kerasModelToDownload = downloadKerasModel()
|
| 203 |
+
st.session_state.plotsToDownload = create_zip_of_png_files()
|
| 204 |
+
|
| 205 |
+
@st.fragment()
|
| 206 |
+
def downloads():
|
| 207 |
+
st.download_button(
|
| 208 |
+
label="Download Model",
|
| 209 |
+
data = downloadKerasModel(),
|
| 210 |
+
file_name="model.keras",
|
| 211 |
+
mime="application/octet-stream"
|
| 212 |
+
);
|
| 213 |
+
|
| 214 |
+
st.download_button(
|
| 215 |
+
label="Download Plots",
|
| 216 |
+
data=create_zip_of_png_files(),
|
| 217 |
+
file_name="images.zip",
|
| 218 |
+
mime="application/zip"
|
| 219 |
+
);
|
| 220 |
+
# column = st.columns (2)
|
| 221 |
+
|
| 222 |
+
# column[0].download_button(
|
| 223 |
+
# label="Download Model",
|
| 224 |
+
# data = downloadKerasModel(),
|
| 225 |
+
# file_name="model.keras",
|
| 226 |
+
# mime="application/octet-stream"
|
| 227 |
+
# );
|
| 228 |
+
|
| 229 |
+
# column[1].download_button(
|
| 230 |
+
# label="Download Plots",
|
| 231 |
+
# data=create_zip_of_png_files(),
|
| 232 |
+
# file_name="images.zip",
|
| 233 |
+
# mime="application/zip"
|
| 234 |
+
# );
|
| 235 |
+
|
| 236 |
+
with st.sidebar:
|
| 237 |
+
downloads()
|
| 238 |
+
|
| 239 |
+
# visualiser.plotFlowForNetwork();
|
| 240 |
+
|
| 241 |
+
image_files = glob.glob("*.png")
|
| 242 |
+
|
| 243 |
+
# Use Streamlit to display the image from the buffer
|
| 244 |
+
st.image(image_files)
|
| 245 |
+
|
| 246 |
+
# if st.sidebar.button("Download Keras model"):
|
| 247 |
+
# downloadKerasModel()
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# if st.sidebar.download_button(
|
| 251 |
+
# label="Download Keras Model",
|
| 252 |
+
# data = downloadKerasModel(),
|
| 253 |
+
# file_name="model.keras",
|
| 254 |
+
# mime="application/octet-stream"
|
| 255 |
+
# ):
|
| 256 |
+
# st.sidebar.success(f"Model Downloaded Successfully")
|
| 257 |
+
|
| 258 |
+
# # Button to create and download the ZIP file
|
| 259 |
+
# if st.sidebar.download_button(
|
| 260 |
+
# label="Download Plots",
|
| 261 |
+
# data=create_zip_of_png_files(),
|
| 262 |
+
# file_name="images.zip",
|
| 263 |
+
# mime="application/zip"
|
| 264 |
+
# ):
|
| 265 |
+
# st.sidebar.success(f"Plots Downloaded Successfully")
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.23.5
|
| 2 |
+
keras==2.14.0
|
| 3 |
+
matplotlib==3.7.1
|
| 4 |
+
tensorflow==2.14.0
|
| 5 |
+
NeuralNetworkCoordinates==1.0.0
|
| 6 |
+
NNVisualiser==1.0.0
|