Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| import json | |
| import datetime | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| import yaml | |
| import uuid | |
| import tempfile | |
| import shutil | |
| # Demo configuration | |
| DEMO_CASE_ID = f"DEMO-{uuid.uuid4().hex[:8]}" | |
| DEMO_OUTPUT_DIR = "demo_output" | |
| DEMO_EVIDENCE_DIR = os.path.join(DEMO_OUTPUT_DIR, "evidence") | |
| DEMO_ANALYSIS_DIR = os.path.join(DEMO_OUTPUT_DIR, "analysis") | |
| DEMO_REPORT_DIR = os.path.join(DEMO_OUTPUT_DIR, "reports") | |
| # Create directories if they don't exist | |
| os.makedirs(DEMO_EVIDENCE_DIR, exist_ok=True) | |
| os.makedirs(DEMO_ANALYSIS_DIR, exist_ok=True) | |
| os.makedirs(DEMO_REPORT_DIR, exist_ok=True) | |
| # Cloud provider connection functions | |
| def test_aws_connection(access_key, secret_key, region): | |
| """Test connection to AWS""" | |
| try: | |
| import boto3 | |
| session = boto3.Session( | |
| aws_access_key_id=access_key, | |
| aws_secret_access_key=secret_key, | |
| region_name=region | |
| ) | |
| sts = session.client('sts') | |
| identity = sts.get_caller_identity() | |
| return True, f"Successfully connected to AWS as {identity['Arn']}" | |
| except Exception as e: | |
| return False, f"Failed to connect to AWS: {str(e)}" | |
| def test_azure_connection(tenant_id, client_id, client_secret): | |
| """Test connection to Azure""" | |
| try: | |
| from azure.identity import ClientSecretCredential | |
| from azure.mgmt.resource import ResourceManagementClient | |
| credential = ClientSecretCredential( | |
| tenant_id=tenant_id, | |
| client_id=client_id, | |
| client_secret=client_secret | |
| ) | |
| # Create a resource management client | |
| resource_client = ResourceManagementClient(credential, subscription_id) | |
| # List resource groups to test the connection | |
| resource_groups = list(resource_client.resource_groups.list()) | |
| return True, f"Successfully connected to Azure. Found {len(resource_groups)} resource groups." | |
| except Exception as e: | |
| return False, f"Failed to connect to Azure: {str(e)}" | |
| def test_gcp_connection(service_account_json): | |
| """Test connection to GCP""" | |
| try: | |
| import json | |
| from google.oauth2 import service_account | |
| from google.cloud import storage | |
| # Create a temporary file to store the service account JSON | |
| fd, path = tempfile.mkstemp() | |
| try: | |
| with os.fdopen(fd, 'w') as tmp: | |
| tmp.write(service_account_json) | |
| # Create credentials from the service account file | |
| credentials = service_account.Credentials.from_service_account_file(path) | |
| # Create a storage client to test the connection | |
| storage_client = storage.Client(credentials=credentials) | |
| # List buckets to test the connection | |
| buckets = list(storage_client.list_buckets()) | |
| return True, f"Successfully connected to GCP. Found {len(buckets)} storage buckets." | |
| finally: | |
| os.remove(path) | |
| except Exception as e: | |
| return False, f"Failed to connect to GCP: {str(e)}" | |
| # Sample data for demonstration | |
| def generate_sample_data(case_info, cloud_provider, incident_type, use_real_data=False, credentials=None): | |
| """Generate sample data for demonstration purposes or collect real data if credentials provided""" | |
| if use_real_data and credentials: | |
| # This would be where we implement real data collection using the provided credentials | |
| # For now, we'll return a message indicating this would use real data | |
| return { | |
| "timeline": [], | |
| "patterns": [], | |
| "anomalies": [], | |
| "files": {}, | |
| "message": "In a production deployment, this would collect real data from your cloud provider." | |
| } | |
| # Create sample timeline data | |
| timeline_data = [] | |
| base_time = datetime.datetime.now() - datetime.timedelta(days=1) | |
| # Different events based on incident type | |
| if incident_type == "Unauthorized Access": | |
| events = [ | |
| {"event": "Failed login attempt", "source": "Authentication Logs", "severity": "Low"}, | |
| {"event": "Successful login from unusual IP", "source": "Authentication Logs", "severity": "Medium"}, | |
| {"event": "User privilege escalation", "source": "IAM Logs", "severity": "High"}, | |
| {"event": "Access to sensitive data", "source": "Data Access Logs", "severity": "High"}, | |
| {"event": "Configuration change", "source": "Configuration Logs", "severity": "Medium"}, | |
| {"event": "New API key created", "source": "IAM Logs", "severity": "High"}, | |
| {"event": "Data download initiated", "source": "Data Access Logs", "severity": "Critical"}, | |
| {"event": "Unusual network traffic", "source": "Network Logs", "severity": "Medium"} | |
| ] | |
| elif incident_type == "Data Exfiltration": | |
| events = [ | |
| {"event": "Large query executed", "source": "Database Logs", "severity": "Medium"}, | |
| {"event": "Unusual data access pattern", "source": "Data Access Logs", "severity": "Medium"}, | |
| {"event": "Large data transfer initiated", "source": "Network Logs", "severity": "High"}, | |
| {"event": "Connection to unknown external endpoint", "source": "Network Logs", "severity": "High"}, | |
| {"event": "Storage object permissions modified", "source": "Storage Logs", "severity": "Medium"}, | |
| {"event": "Unusual user behavior", "source": "User Activity Logs", "severity": "Medium"}, | |
| {"event": "Data archive created", "source": "Storage Logs", "severity": "Medium"}, | |
| {"event": "Unusual egress traffic spike", "source": "Network Logs", "severity": "Critical"} | |
| ] | |
| else: # Ransomware | |
| events = [ | |
| {"event": "Unusual process execution", "source": "System Logs", "severity": "Medium"}, | |
| {"event": "Multiple file modifications", "source": "File System Logs", "severity": "High"}, | |
| {"event": "Encryption library loaded", "source": "System Logs", "severity": "High"}, | |
| {"event": "Mass file type changes", "source": "Storage Logs", "severity": "Critical"}, | |
| {"event": "Backup deletion attempt", "source": "Backup Logs", "severity": "Critical"}, | |
| {"event": "Unusual IAM activity", "source": "IAM Logs", "severity": "Medium"}, | |
| {"event": "Recovery service disabled", "source": "System Logs", "severity": "High"}, | |
| {"event": "Ransom note created", "source": "File System Logs", "severity": "Critical"} | |
| ] | |
| # Create timeline with timestamps | |
| for i, event in enumerate(events): | |
| event_time = base_time + datetime.timedelta(minutes=i*15) | |
| timeline_data.append({ | |
| "timestamp": event_time.isoformat(), | |
| "event": event["event"], | |
| "source": event["source"], | |
| "cloud_provider": cloud_provider, | |
| "severity": event["severity"], | |
| "case_id": case_info["case_id"] | |
| }) | |
| # Create patterns data | |
| patterns = [] | |
| if incident_type == "Unauthorized Access": | |
| patterns = [ | |
| {"pattern": "Brute Force Login Attempt", "confidence": 0.85, "matched_events": 3}, | |
| {"pattern": "Privilege Escalation", "confidence": 0.92, "matched_events": 2} | |
| ] | |
| elif incident_type == "Data Exfiltration": | |
| patterns = [ | |
| {"pattern": "Data Staging Activity", "confidence": 0.88, "matched_events": 3}, | |
| {"pattern": "Exfiltration Over Alternative Protocol", "confidence": 0.76, "matched_events": 2} | |
| ] | |
| else: # Ransomware | |
| patterns = [ | |
| {"pattern": "Mass File Encryption", "confidence": 0.94, "matched_events": 4}, | |
| {"pattern": "Defense Evasion", "confidence": 0.81, "matched_events": 3} | |
| ] | |
| # Create anomalies data | |
| anomalies = [] | |
| if incident_type == "Unauthorized Access": | |
| anomalies = [ | |
| {"anomaly": "Login from unusual location", "deviation": 3.6, "severity": "High"}, | |
| {"anomaly": "Off-hours access", "deviation": 2.8, "severity": "Medium"} | |
| ] | |
| elif incident_type == "Data Exfiltration": | |
| anomalies = [ | |
| {"anomaly": "Unusual data access volume", "deviation": 4.2, "severity": "High"}, | |
| {"anomaly": "Abnormal query pattern", "deviation": 3.1, "severity": "Medium"} | |
| ] | |
| else: # Ransomware | |
| anomalies = [ | |
| {"anomaly": "Unusual file system activity", "deviation": 4.7, "severity": "Critical"}, | |
| {"anomaly": "Suspicious process behavior", "deviation": 3.9, "severity": "High"} | |
| ] | |
| # Save data to files | |
| timeline_file = os.path.join(DEMO_EVIDENCE_DIR, f"{DEMO_CASE_ID}_timeline.json") | |
| patterns_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_patterns.json") | |
| anomalies_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_anomalies.json") | |
| with open(timeline_file, 'w') as f: | |
| json.dump(timeline_data, f, indent=2) | |
| with open(patterns_file, 'w') as f: | |
| json.dump(patterns, f, indent=2) | |
| with open(anomalies_file, 'w') as f: | |
| json.dump(anomalies, f, indent=2) | |
| return { | |
| "timeline": timeline_data, | |
| "patterns": patterns, | |
| "anomalies": anomalies, | |
| "files": { | |
| "timeline": timeline_file, | |
| "patterns": patterns_file, | |
| "anomalies": anomalies_file | |
| } | |
| } | |
| def analyze_evidence(data): | |
| """Perform analysis on the evidence data""" | |
| # If there's no timeline data, return empty results | |
| if not data["timeline"]: | |
| return { | |
| "severity_counts": {}, | |
| "source_counts": {}, | |
| "charts": { | |
| "analysis": None, | |
| "timeline": None | |
| } | |
| } | |
| # Convert timeline to DataFrame for analysis | |
| timeline_df = pd.DataFrame(data["timeline"]) | |
| timeline_df["timestamp"] = pd.to_datetime(timeline_df["timestamp"]) | |
| # Sort by timestamp | |
| timeline_df = timeline_df.sort_values("timestamp") | |
| # Count events by severity | |
| severity_counts = timeline_df["severity"].value_counts() | |
| # Count events by source | |
| source_counts = timeline_df["source"].value_counts() | |
| # Create visualizations | |
| fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) | |
| # Severity pie chart | |
| ax1.pie(severity_counts, labels=severity_counts.index, autopct='%1.1f%%', | |
| colors=sns.color_palette("YlOrRd", len(severity_counts))) | |
| ax1.set_title("Events by Severity") | |
| # Source bar chart | |
| sns.barplot(x=source_counts.values, y=source_counts.index, ax=ax2, palette="viridis") | |
| ax2.set_title("Events by Source") | |
| ax2.set_xlabel("Count") | |
| # Save the figure | |
| chart_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_analysis_charts.png") | |
| plt.tight_layout() | |
| plt.savefig(chart_file) | |
| plt.close() | |
| # Create a timeline visualization | |
| plt.figure(figsize=(12, 6)) | |
| # Create a categorical y-axis based on source | |
| sources = timeline_df["source"].unique() | |
| source_map = {source: i for i, source in enumerate(sources)} | |
| timeline_df["source_num"] = timeline_df["source"].map(source_map) | |
| # Map severity to color | |
| severity_colors = { | |
| "Low": "green", | |
| "Medium": "blue", | |
| "High": "orange", | |
| "Critical": "red" | |
| } | |
| colors = timeline_df["severity"].map(severity_colors) | |
| # Plot the timeline | |
| plt.scatter(timeline_df["timestamp"], timeline_df["source_num"], c=colors, s=100) | |
| # Add event labels | |
| for i, row in timeline_df.iterrows(): | |
| plt.text(row["timestamp"], row["source_num"], row["event"], | |
| fontsize=8, ha="right", va="bottom", rotation=25) | |
| plt.yticks(range(len(sources)), sources) | |
| plt.xlabel("Time") | |
| plt.ylabel("Event Source") | |
| plt.title("Incident Timeline") | |
| # Save the timeline | |
| timeline_chart = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_timeline_chart.png") | |
| plt.tight_layout() | |
| plt.savefig(timeline_chart) | |
| plt.close() | |
| return { | |
| "severity_counts": severity_counts.to_dict(), | |
| "source_counts": source_counts.to_dict(), | |
| "charts": { | |
| "analysis": chart_file, | |
| "timeline": timeline_chart | |
| } | |
| } | |
| def generate_report(case_info, data, analysis, report_format): | |
| """Generate a report based on the analysis""" | |
| # Create report content | |
| report = { | |
| "case_information": case_info, | |
| "executive_summary": f"This report presents the findings of a forensic investigation into a {case_info['incident_type']} incident in {case_info['cloud_provider']} cloud environment.", | |
| "timeline": data["timeline"], | |
| "patterns_detected": data["patterns"], | |
| "anomalies_detected": data["anomalies"], | |
| "analysis_results": { | |
| "severity_distribution": analysis.get("severity_counts", {}), | |
| "source_distribution": analysis.get("source_counts", {}) | |
| }, | |
| "recommendations": [ | |
| "Implement multi-factor authentication for all privileged accounts", | |
| "Review and restrict IAM permissions following principle of least privilege", | |
| "Enable comprehensive logging across all cloud services", | |
| "Implement automated alerting for suspicious activities", | |
| "Conduct regular security assessments of cloud environments" | |
| ] | |
| } | |
| # Save report in requested format | |
| if report_format == "JSON": | |
| report_file = os.path.join(DEMO_REPORT_DIR, f"{DEMO_CASE_ID}_report.json") | |
| with open(report_file, 'w') as f: | |
| json.dump(report, f, indent=2) | |
| else: # HTML | |
| # Create a simple HTML report | |
| html_content = f""" | |
| <!DOCTYPE html> | |
| <html> | |
| <head> | |
| <title>Forensic Analysis Report - {case_info['case_id']}</title> | |
| <style> | |
| body {{ font-family: Arial, sans-serif; margin: 40px; }} | |
| h1, h2, h3 {{ color: #2c3e50; }} | |
| .section {{ margin-bottom: 30px; }} | |
| .severity-high {{ color: #e74c3c; }} | |
| .severity-medium {{ color: #f39c12; }} | |
| .severity-low {{ color: #27ae60; }} | |
| table {{ border-collapse: collapse; width: 100%; }} | |
| th, td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }} | |
| th {{ background-color: #f2f2f2; }} | |
| tr:nth-child(even) {{ background-color: #f9f9f9; }} | |
| .chart-container {{ display: flex; justify-content: center; margin: 20px 0; }} | |
| .chart {{ max-width: 100%; height: auto; margin: 10px; }} | |
| .message {{ background-color: #f8f9fa; padding: 15px; border-left: 5px solid #4e73df; margin-bottom: 20px; }} | |
| </style> | |
| </head> | |
| <body> | |
| <h1>Cloud Forensics Analysis Report</h1> | |
| <div class="section"> | |
| <h2>Case Information</h2> | |
| <p><strong>Case ID:</strong> {case_info['case_id']}</p> | |
| <p><strong>Investigator:</strong> {case_info['investigator']}</p> | |
| <p><strong>Organization:</strong> {case_info['organization']}</p> | |
| <p><strong>Cloud Provider:</strong> {case_info['cloud_provider']}</p> | |
| <p><strong>Incident Type:</strong> {case_info['incident_type']}</p> | |
| <p><strong>Report Date:</strong> {datetime.datetime.now().strftime('%Y-%m-%d')}</p> | |
| </div> | |
| <div class="section"> | |
| <h2>Executive Summary</h2> | |
| <p>{report['executive_summary']}</p> | |
| """ | |
| # Add message if using real data | |
| if "message" in data: | |
| html_content += f""" | |
| <div class="mes | |
| (Content truncated due to size limit. Use line ranges to read in chunks) |