Spaces:
Runtime error
Runtime error
Upload app (1).py
Browse files- app (1).py +380 -0
app (1).py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import datetime
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
import yaml
|
| 9 |
+
import uuid
|
| 10 |
+
import tempfile
|
| 11 |
+
import shutil
|
| 12 |
+
|
| 13 |
+
# Demo configuration
|
| 14 |
+
DEMO_CASE_ID = f"DEMO-{uuid.uuid4().hex[:8]}"
|
| 15 |
+
DEMO_OUTPUT_DIR = "demo_output"
|
| 16 |
+
DEMO_EVIDENCE_DIR = os.path.join(DEMO_OUTPUT_DIR, "evidence")
|
| 17 |
+
DEMO_ANALYSIS_DIR = os.path.join(DEMO_OUTPUT_DIR, "analysis")
|
| 18 |
+
DEMO_REPORT_DIR = os.path.join(DEMO_OUTPUT_DIR, "reports")
|
| 19 |
+
|
| 20 |
+
# Create directories if they don't exist
|
| 21 |
+
os.makedirs(DEMO_EVIDENCE_DIR, exist_ok=True)
|
| 22 |
+
os.makedirs(DEMO_ANALYSIS_DIR, exist_ok=True)
|
| 23 |
+
os.makedirs(DEMO_REPORT_DIR, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
# Cloud provider connection functions
|
| 26 |
+
def test_aws_connection(access_key, secret_key, region):
|
| 27 |
+
"""Test connection to AWS"""
|
| 28 |
+
try:
|
| 29 |
+
import boto3
|
| 30 |
+
session = boto3.Session(
|
| 31 |
+
aws_access_key_id=access_key,
|
| 32 |
+
aws_secret_access_key=secret_key,
|
| 33 |
+
region_name=region
|
| 34 |
+
)
|
| 35 |
+
sts = session.client('sts')
|
| 36 |
+
identity = sts.get_caller_identity()
|
| 37 |
+
return True, f"Successfully connected to AWS as {identity['Arn']}"
|
| 38 |
+
except Exception as e:
|
| 39 |
+
return False, f"Failed to connect to AWS: {str(e)}"
|
| 40 |
+
|
| 41 |
+
def test_azure_connection(tenant_id, client_id, client_secret):
|
| 42 |
+
"""Test connection to Azure"""
|
| 43 |
+
try:
|
| 44 |
+
from azure.identity import ClientSecretCredential
|
| 45 |
+
from azure.mgmt.resource import ResourceManagementClient
|
| 46 |
+
|
| 47 |
+
credential = ClientSecretCredential(
|
| 48 |
+
tenant_id=tenant_id,
|
| 49 |
+
client_id=client_id,
|
| 50 |
+
client_secret=client_secret
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Create a resource management client
|
| 54 |
+
resource_client = ResourceManagementClient(credential, subscription_id)
|
| 55 |
+
|
| 56 |
+
# List resource groups to test the connection
|
| 57 |
+
resource_groups = list(resource_client.resource_groups.list())
|
| 58 |
+
return True, f"Successfully connected to Azure. Found {len(resource_groups)} resource groups."
|
| 59 |
+
except Exception as e:
|
| 60 |
+
return False, f"Failed to connect to Azure: {str(e)}"
|
| 61 |
+
|
| 62 |
+
def test_gcp_connection(service_account_json):
|
| 63 |
+
"""Test connection to GCP"""
|
| 64 |
+
try:
|
| 65 |
+
import json
|
| 66 |
+
from google.oauth2 import service_account
|
| 67 |
+
from google.cloud import storage
|
| 68 |
+
|
| 69 |
+
# Create a temporary file to store the service account JSON
|
| 70 |
+
fd, path = tempfile.mkstemp()
|
| 71 |
+
try:
|
| 72 |
+
with os.fdopen(fd, 'w') as tmp:
|
| 73 |
+
tmp.write(service_account_json)
|
| 74 |
+
|
| 75 |
+
# Create credentials from the service account file
|
| 76 |
+
credentials = service_account.Credentials.from_service_account_file(path)
|
| 77 |
+
|
| 78 |
+
# Create a storage client to test the connection
|
| 79 |
+
storage_client = storage.Client(credentials=credentials)
|
| 80 |
+
|
| 81 |
+
# List buckets to test the connection
|
| 82 |
+
buckets = list(storage_client.list_buckets())
|
| 83 |
+
return True, f"Successfully connected to GCP. Found {len(buckets)} storage buckets."
|
| 84 |
+
finally:
|
| 85 |
+
os.remove(path)
|
| 86 |
+
except Exception as e:
|
| 87 |
+
return False, f"Failed to connect to GCP: {str(e)}"
|
| 88 |
+
|
| 89 |
+
# Sample data for demonstration
|
| 90 |
+
def generate_sample_data(case_info, cloud_provider, incident_type, use_real_data=False, credentials=None):
|
| 91 |
+
"""Generate sample data for demonstration purposes or collect real data if credentials provided"""
|
| 92 |
+
|
| 93 |
+
if use_real_data and credentials:
|
| 94 |
+
# This would be where we implement real data collection using the provided credentials
|
| 95 |
+
# For now, we'll return a message indicating this would use real data
|
| 96 |
+
return {
|
| 97 |
+
"timeline": [],
|
| 98 |
+
"patterns": [],
|
| 99 |
+
"anomalies": [],
|
| 100 |
+
"files": {},
|
| 101 |
+
"message": "In a production deployment, this would collect real data from your cloud provider."
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
# Create sample timeline data
|
| 105 |
+
timeline_data = []
|
| 106 |
+
base_time = datetime.datetime.now() - datetime.timedelta(days=1)
|
| 107 |
+
|
| 108 |
+
# Different events based on incident type
|
| 109 |
+
if incident_type == "Unauthorized Access":
|
| 110 |
+
events = [
|
| 111 |
+
{"event": "Failed login attempt", "source": "Authentication Logs", "severity": "Low"},
|
| 112 |
+
{"event": "Successful login from unusual IP", "source": "Authentication Logs", "severity": "Medium"},
|
| 113 |
+
{"event": "User privilege escalation", "source": "IAM Logs", "severity": "High"},
|
| 114 |
+
{"event": "Access to sensitive data", "source": "Data Access Logs", "severity": "High"},
|
| 115 |
+
{"event": "Configuration change", "source": "Configuration Logs", "severity": "Medium"},
|
| 116 |
+
{"event": "New API key created", "source": "IAM Logs", "severity": "High"},
|
| 117 |
+
{"event": "Data download initiated", "source": "Data Access Logs", "severity": "Critical"},
|
| 118 |
+
{"event": "Unusual network traffic", "source": "Network Logs", "severity": "Medium"}
|
| 119 |
+
]
|
| 120 |
+
elif incident_type == "Data Exfiltration":
|
| 121 |
+
events = [
|
| 122 |
+
{"event": "Large query executed", "source": "Database Logs", "severity": "Medium"},
|
| 123 |
+
{"event": "Unusual data access pattern", "source": "Data Access Logs", "severity": "Medium"},
|
| 124 |
+
{"event": "Large data transfer initiated", "source": "Network Logs", "severity": "High"},
|
| 125 |
+
{"event": "Connection to unknown external endpoint", "source": "Network Logs", "severity": "High"},
|
| 126 |
+
{"event": "Storage object permissions modified", "source": "Storage Logs", "severity": "Medium"},
|
| 127 |
+
{"event": "Unusual user behavior", "source": "User Activity Logs", "severity": "Medium"},
|
| 128 |
+
{"event": "Data archive created", "source": "Storage Logs", "severity": "Medium"},
|
| 129 |
+
{"event": "Unusual egress traffic spike", "source": "Network Logs", "severity": "Critical"}
|
| 130 |
+
]
|
| 131 |
+
else: # Ransomware
|
| 132 |
+
events = [
|
| 133 |
+
{"event": "Unusual process execution", "source": "System Logs", "severity": "Medium"},
|
| 134 |
+
{"event": "Multiple file modifications", "source": "File System Logs", "severity": "High"},
|
| 135 |
+
{"event": "Encryption library loaded", "source": "System Logs", "severity": "High"},
|
| 136 |
+
{"event": "Mass file type changes", "source": "Storage Logs", "severity": "Critical"},
|
| 137 |
+
{"event": "Backup deletion attempt", "source": "Backup Logs", "severity": "Critical"},
|
| 138 |
+
{"event": "Unusual IAM activity", "source": "IAM Logs", "severity": "Medium"},
|
| 139 |
+
{"event": "Recovery service disabled", "source": "System Logs", "severity": "High"},
|
| 140 |
+
{"event": "Ransom note created", "source": "File System Logs", "severity": "Critical"}
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
# Create timeline with timestamps
|
| 144 |
+
for i, event in enumerate(events):
|
| 145 |
+
event_time = base_time + datetime.timedelta(minutes=i*15)
|
| 146 |
+
timeline_data.append({
|
| 147 |
+
"timestamp": event_time.isoformat(),
|
| 148 |
+
"event": event["event"],
|
| 149 |
+
"source": event["source"],
|
| 150 |
+
"cloud_provider": cloud_provider,
|
| 151 |
+
"severity": event["severity"],
|
| 152 |
+
"case_id": case_info["case_id"]
|
| 153 |
+
})
|
| 154 |
+
|
| 155 |
+
# Create patterns data
|
| 156 |
+
patterns = []
|
| 157 |
+
if incident_type == "Unauthorized Access":
|
| 158 |
+
patterns = [
|
| 159 |
+
{"pattern": "Brute Force Login Attempt", "confidence": 0.85, "matched_events": 3},
|
| 160 |
+
{"pattern": "Privilege Escalation", "confidence": 0.92, "matched_events": 2}
|
| 161 |
+
]
|
| 162 |
+
elif incident_type == "Data Exfiltration":
|
| 163 |
+
patterns = [
|
| 164 |
+
{"pattern": "Data Staging Activity", "confidence": 0.88, "matched_events": 3},
|
| 165 |
+
{"pattern": "Exfiltration Over Alternative Protocol", "confidence": 0.76, "matched_events": 2}
|
| 166 |
+
]
|
| 167 |
+
else: # Ransomware
|
| 168 |
+
patterns = [
|
| 169 |
+
{"pattern": "Mass File Encryption", "confidence": 0.94, "matched_events": 4},
|
| 170 |
+
{"pattern": "Defense Evasion", "confidence": 0.81, "matched_events": 3}
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
# Create anomalies data
|
| 174 |
+
anomalies = []
|
| 175 |
+
if incident_type == "Unauthorized Access":
|
| 176 |
+
anomalies = [
|
| 177 |
+
{"anomaly": "Login from unusual location", "deviation": 3.6, "severity": "High"},
|
| 178 |
+
{"anomaly": "Off-hours access", "deviation": 2.8, "severity": "Medium"}
|
| 179 |
+
]
|
| 180 |
+
elif incident_type == "Data Exfiltration":
|
| 181 |
+
anomalies = [
|
| 182 |
+
{"anomaly": "Unusual data access volume", "deviation": 4.2, "severity": "High"},
|
| 183 |
+
{"anomaly": "Abnormal query pattern", "deviation": 3.1, "severity": "Medium"}
|
| 184 |
+
]
|
| 185 |
+
else: # Ransomware
|
| 186 |
+
anomalies = [
|
| 187 |
+
{"anomaly": "Unusual file system activity", "deviation": 4.7, "severity": "Critical"},
|
| 188 |
+
{"anomaly": "Suspicious process behavior", "deviation": 3.9, "severity": "High"}
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
# Save data to files
|
| 192 |
+
timeline_file = os.path.join(DEMO_EVIDENCE_DIR, f"{DEMO_CASE_ID}_timeline.json")
|
| 193 |
+
patterns_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_patterns.json")
|
| 194 |
+
anomalies_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_anomalies.json")
|
| 195 |
+
|
| 196 |
+
with open(timeline_file, 'w') as f:
|
| 197 |
+
json.dump(timeline_data, f, indent=2)
|
| 198 |
+
|
| 199 |
+
with open(patterns_file, 'w') as f:
|
| 200 |
+
json.dump(patterns, f, indent=2)
|
| 201 |
+
|
| 202 |
+
with open(anomalies_file, 'w') as f:
|
| 203 |
+
json.dump(anomalies, f, indent=2)
|
| 204 |
+
|
| 205 |
+
return {
|
| 206 |
+
"timeline": timeline_data,
|
| 207 |
+
"patterns": patterns,
|
| 208 |
+
"anomalies": anomalies,
|
| 209 |
+
"files": {
|
| 210 |
+
"timeline": timeline_file,
|
| 211 |
+
"patterns": patterns_file,
|
| 212 |
+
"anomalies": anomalies_file
|
| 213 |
+
}
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
def analyze_evidence(data):
|
| 217 |
+
"""Perform analysis on the evidence data"""
|
| 218 |
+
|
| 219 |
+
# If there's no timeline data, return empty results
|
| 220 |
+
if not data["timeline"]:
|
| 221 |
+
return {
|
| 222 |
+
"severity_counts": {},
|
| 223 |
+
"source_counts": {},
|
| 224 |
+
"charts": {
|
| 225 |
+
"analysis": None,
|
| 226 |
+
"timeline": None
|
| 227 |
+
}
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
# Convert timeline to DataFrame for analysis
|
| 231 |
+
timeline_df = pd.DataFrame(data["timeline"])
|
| 232 |
+
timeline_df["timestamp"] = pd.to_datetime(timeline_df["timestamp"])
|
| 233 |
+
|
| 234 |
+
# Sort by timestamp
|
| 235 |
+
timeline_df = timeline_df.sort_values("timestamp")
|
| 236 |
+
|
| 237 |
+
# Count events by severity
|
| 238 |
+
severity_counts = timeline_df["severity"].value_counts()
|
| 239 |
+
|
| 240 |
+
# Count events by source
|
| 241 |
+
source_counts = timeline_df["source"].value_counts()
|
| 242 |
+
|
| 243 |
+
# Create visualizations
|
| 244 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
|
| 245 |
+
|
| 246 |
+
# Severity pie chart
|
| 247 |
+
ax1.pie(severity_counts, labels=severity_counts.index, autopct='%1.1f%%',
|
| 248 |
+
colors=sns.color_palette("YlOrRd", len(severity_counts)))
|
| 249 |
+
ax1.set_title("Events by Severity")
|
| 250 |
+
|
| 251 |
+
# Source bar chart
|
| 252 |
+
sns.barplot(x=source_counts.values, y=source_counts.index, ax=ax2, palette="viridis")
|
| 253 |
+
ax2.set_title("Events by Source")
|
| 254 |
+
ax2.set_xlabel("Count")
|
| 255 |
+
|
| 256 |
+
# Save the figure
|
| 257 |
+
chart_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_analysis_charts.png")
|
| 258 |
+
plt.tight_layout()
|
| 259 |
+
plt.savefig(chart_file)
|
| 260 |
+
plt.close()
|
| 261 |
+
|
| 262 |
+
# Create a timeline visualization
|
| 263 |
+
plt.figure(figsize=(12, 6))
|
| 264 |
+
|
| 265 |
+
# Create a categorical y-axis based on source
|
| 266 |
+
sources = timeline_df["source"].unique()
|
| 267 |
+
source_map = {source: i for i, source in enumerate(sources)}
|
| 268 |
+
timeline_df["source_num"] = timeline_df["source"].map(source_map)
|
| 269 |
+
|
| 270 |
+
# Map severity to color
|
| 271 |
+
severity_colors = {
|
| 272 |
+
"Low": "green",
|
| 273 |
+
"Medium": "blue",
|
| 274 |
+
"High": "orange",
|
| 275 |
+
"Critical": "red"
|
| 276 |
+
}
|
| 277 |
+
colors = timeline_df["severity"].map(severity_colors)
|
| 278 |
+
|
| 279 |
+
# Plot the timeline
|
| 280 |
+
plt.scatter(timeline_df["timestamp"], timeline_df["source_num"], c=colors, s=100)
|
| 281 |
+
|
| 282 |
+
# Add event labels
|
| 283 |
+
for i, row in timeline_df.iterrows():
|
| 284 |
+
plt.text(row["timestamp"], row["source_num"], row["event"],
|
| 285 |
+
fontsize=8, ha="right", va="bottom", rotation=25)
|
| 286 |
+
|
| 287 |
+
plt.yticks(range(len(sources)), sources)
|
| 288 |
+
plt.xlabel("Time")
|
| 289 |
+
plt.ylabel("Event Source")
|
| 290 |
+
plt.title("Incident Timeline")
|
| 291 |
+
|
| 292 |
+
# Save the timeline
|
| 293 |
+
timeline_chart = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_timeline_chart.png")
|
| 294 |
+
plt.tight_layout()
|
| 295 |
+
plt.savefig(timeline_chart)
|
| 296 |
+
plt.close()
|
| 297 |
+
|
| 298 |
+
return {
|
| 299 |
+
"severity_counts": severity_counts.to_dict(),
|
| 300 |
+
"source_counts": source_counts.to_dict(),
|
| 301 |
+
"charts": {
|
| 302 |
+
"analysis": chart_file,
|
| 303 |
+
"timeline": timeline_chart
|
| 304 |
+
}
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
def generate_report(case_info, data, analysis, report_format):
|
| 308 |
+
"""Generate a report based on the analysis"""
|
| 309 |
+
|
| 310 |
+
# Create report content
|
| 311 |
+
report = {
|
| 312 |
+
"case_information": case_info,
|
| 313 |
+
"executive_summary": f"This report presents the findings of a forensic investigation into a {case_info['incident_type']} incident in {case_info['cloud_provider']} cloud environment.",
|
| 314 |
+
"timeline": data["timeline"],
|
| 315 |
+
"patterns_detected": data["patterns"],
|
| 316 |
+
"anomalies_detected": data["anomalies"],
|
| 317 |
+
"analysis_results": {
|
| 318 |
+
"severity_distribution": analysis.get("severity_counts", {}),
|
| 319 |
+
"source_distribution": analysis.get("source_counts", {})
|
| 320 |
+
},
|
| 321 |
+
"recommendations": [
|
| 322 |
+
"Implement multi-factor authentication for all privileged accounts",
|
| 323 |
+
"Review and restrict IAM permissions following principle of least privilege",
|
| 324 |
+
"Enable comprehensive logging across all cloud services",
|
| 325 |
+
"Implement automated alerting for suspicious activities",
|
| 326 |
+
"Conduct regular security assessments of cloud environments"
|
| 327 |
+
]
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
# Save report in requested format
|
| 331 |
+
if report_format == "JSON":
|
| 332 |
+
report_file = os.path.join(DEMO_REPORT_DIR, f"{DEMO_CASE_ID}_report.json")
|
| 333 |
+
with open(report_file, 'w') as f:
|
| 334 |
+
json.dump(report, f, indent=2)
|
| 335 |
+
else: # HTML
|
| 336 |
+
# Create a simple HTML report
|
| 337 |
+
html_content = f"""
|
| 338 |
+
<!DOCTYPE html>
|
| 339 |
+
<html>
|
| 340 |
+
<head>
|
| 341 |
+
<title>Forensic Analysis Report - {case_info['case_id']}</title>
|
| 342 |
+
<style>
|
| 343 |
+
body {{ font-family: Arial, sans-serif; margin: 40px; }}
|
| 344 |
+
h1, h2, h3 {{ color: #2c3e50; }}
|
| 345 |
+
.section {{ margin-bottom: 30px; }}
|
| 346 |
+
.severity-high {{ color: #e74c3c; }}
|
| 347 |
+
.severity-medium {{ color: #f39c12; }}
|
| 348 |
+
.severity-low {{ color: #27ae60; }}
|
| 349 |
+
table {{ border-collapse: collapse; width: 100%; }}
|
| 350 |
+
th, td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }}
|
| 351 |
+
th {{ background-color: #f2f2f2; }}
|
| 352 |
+
tr:nth-child(even) {{ background-color: #f9f9f9; }}
|
| 353 |
+
.chart-container {{ display: flex; justify-content: center; margin: 20px 0; }}
|
| 354 |
+
.chart {{ max-width: 100%; height: auto; margin: 10px; }}
|
| 355 |
+
.message {{ background-color: #f8f9fa; padding: 15px; border-left: 5px solid #4e73df; margin-bottom: 20px; }}
|
| 356 |
+
</style>
|
| 357 |
+
</head>
|
| 358 |
+
<body>
|
| 359 |
+
<h1>Cloud Forensics Analysis Report</h1>
|
| 360 |
+
|
| 361 |
+
<div class="section">
|
| 362 |
+
<h2>Case Information</h2>
|
| 363 |
+
<p><strong>Case ID:</strong> {case_info['case_id']}</p>
|
| 364 |
+
<p><strong>Investigator:</strong> {case_info['investigator']}</p>
|
| 365 |
+
<p><strong>Organization:</strong> {case_info['organization']}</p>
|
| 366 |
+
<p><strong>Cloud Provider:</strong> {case_info['cloud_provider']}</p>
|
| 367 |
+
<p><strong>Incident Type:</strong> {case_info['incident_type']}</p>
|
| 368 |
+
<p><strong>Report Date:</strong> {datetime.datetime.now().strftime('%Y-%m-%d')}</p>
|
| 369 |
+
</div>
|
| 370 |
+
|
| 371 |
+
<div class="section">
|
| 372 |
+
<h2>Executive Summary</h2>
|
| 373 |
+
<p>{report['executive_summary']}</p>
|
| 374 |
+
"""
|
| 375 |
+
|
| 376 |
+
# Add message if using real data
|
| 377 |
+
if "message" in data:
|
| 378 |
+
html_content += f"""
|
| 379 |
+
<div class="mes
|
| 380 |
+
(Content truncated due to size limit. Use line ranges to read in chunks)
|